PARTIALLY AMPLE LINE BUNDLES ON TORIC VARIETIES

被引:2
|
作者
Broomhead, Nathan [1 ]
Ottem, John Christian [2 ]
Prendergast-Smith, Artie [3 ]
机构
[1] Leibniz Univ Hannover, Insitut Algebra Geometrie, Welfengarten 1, D-30167 Hannover, Germany
[2] Univ Cambridge, DPMMS, Wilberforce Rd, Cambridge CB3 0WB, England
[3] Univ Loughborough, Dept Math Sci, Loughborough LE11 3TU, Leics, England
关键词
ASYMPTOTIC COHOMOLOGICAL FUNCTIONS; DIVISORS;
D O I
10.1017/S001708951500035X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note we study properties of partially ample line bundles on simplicial projective toric varieties. We prove that the cone of q-ample line bundles is a union of rational polyhedral cones, and calculate these cones in examples. We prove a restriction theorem for big q-ample line bundles, and deduce that q-ampleness of the anticanonical bundle is not invariant under flips. Finally we prove a Kodaira-type vanishing theorem for q-ample line bundles.
引用
收藏
页码:587 / 598
页数:12
相关论文
共 50 条