Pivotal role of reversible NiO6 geometric conversion in oxygen evolution

被引:291
作者
Wang, Xiaopeng [1 ]
Xi, Shibo [2 ]
Huang, Pengru [1 ,3 ]
Du, Yonghua [4 ]
Zhong, Haoyin [1 ]
Wang, Qing [1 ]
Borgna, Armando [2 ]
Zhang, Yong-Wei [5 ]
Wang, Zhenbo [6 ]
Wang, Hao [7 ]
Yu, Zhi Gen [5 ]
Lee, Wee Siang Vincent [1 ]
Xue, Junmin [1 ]
机构
[1] Natl Univ Singapore, Dept Mat Sci & Engn, Singapore, Singapore
[2] Agcy Sci Technol & Res, Inst Chem & Engn Sci, Singapore, Singapore
[3] Guilin Univ Elect Technol, Guangxi Collaborat Innovat Ctr Struct & Property, Sch Mat Sci & Engn, Guangxi Key Lab Informat Mat, Guilin, Peoples R China
[4] Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA
[5] Agcy Sci Technol & Res, Inst High Performance Comp, Singapore, Singapore
[6] Harbin Inst Technol, Sch Chem & Chem Engn, Harbin, Peoples R China
[7] Natl Univ Singapore, Dept Mech Engn, Singapore, Singapore
关键词
ELECTROCATALYTIC WATER OXIDATION; LATTICE OXYGEN; CHEMISTRY; CATALYSTS; ELECTRON; SITES; SPIN;
D O I
10.1038/s41586-022-05296-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Realizing an efficient electron transfer process in the oxygen evolution reaction by modifying the electronic states around the Fermi level is crucial in developing high-performing and robust electrocatalysts(1-3). Typically, electron transfer proceeds solely through either a metal redox chemistry (an adsorbate evolution mechanism (AEM), with metal bands around the Fermi level) or an oxygen redox chemistry (a lattice oxygen oxidation mechanism (LOM), with oxygen bands around the Fermi level), without the concurrent occurrence of both metal and oxygen redox chemistries in the same electron transfer pathway(1-15). Here we report an electron transfer mechanism that involves a switchable metal and oxygen redox chemistry in nickel-oxyhydroxide-based materials with light as the trigger. In contrast to the traditional AEM and LOM, the proposed light-triggered coupled oxygen evolution mechanism requires the unit cell to undergo reversible geometric conversion between octahedron (NiO6) and square planar (NiO4) to achieve electronic states (around the Fermi level) with alternative metal and oxygen characters throughout the oxygen evolution process. Utilizing this electron transfer pathway can bypass the potential limiting steps, that is, oxygen-oxygen bonding in AEM and deprotonation in LOM1-5,8. As a result, the electrocatalysts that operate through this route show superior activity compared with previously reported electrocatalysts. Thus, it is expected that the proposed light-triggered coupled oxygen evolution mechanism adds a layer of understanding to the oxygen evolution research scene.
引用
收藏
页码:702 / +
页数:8
相关论文
共 37 条
[1]   Structure-Activity Correlations in a Nickel-Borate Oxygen Evolution Catalyst [J].
Bediako, D. Kwabena ;
Lassalle-Kaiser, Benedikt ;
Surendranath, Yogesh ;
Yano, Junko ;
Yachandra, Vittal K. ;
Nocera, Daniel G. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (15) :6801-6809
[2]   Lifting the lid on the potentiostat: a beginner's guide to understanding electrochemical circuitry and practical operation† [J].
Colburn, Alex W. ;
Levey, Katherine J. ;
O'Hare, Danny ;
Macpherson, Julie V. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2021, 23 (14) :8100-8117
[3]   Universal scaling relations for the rational design of molecular water oxidation catalysts with near-zero overpotential [J].
Craig, Michael John ;
Coulter, Gabriel ;
Dolan, Eoin ;
Soriano-Lopez, Joaquin ;
Mates-Torres, Eric ;
Schmitt, Wolfgang ;
Garcia-Melchor, Max .
NATURE COMMUNICATIONS, 2019, 10 (1)
[4]   NiFe-Based (Oxy)hydroxide Catalysts for Oxygen Evolution Reaction in Non-Acidic Electrolytes [J].
Dionigi, Fabio ;
Strasser, Peter .
ADVANCED ENERGY MATERIALS, 2016, 6 (23)
[5]   Identification of Highly Active Fe Sites in (Ni,Fe)OOH for Electrocatalytic Water Splitting [J].
Friebel, Daniel ;
Louie, Mary W. ;
Bajdich, Michal ;
Sanwald, Kai E. ;
Cai, Yun ;
Wise, Anna M. ;
Cheng, Mu-Jeng ;
Sokaras, Dimosthenis ;
Weng, Tsu-Chien ;
Alonso-Mori, Roberto ;
Davis, Ryan C. ;
Bargar, John R. ;
Norskov, Jens K. ;
Nilsson, Anders ;
Bell, Alexis T. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (03) :1305-1313
[6]   Direct magnetic enhancement of electrocatalytic water oxidation in alkaline media [J].
Garces-Pineda, Felipe A. ;
Blasco-Ahicart, Marta ;
Nieto-Castro, David ;
Lopez, Ntiria ;
Ramon Galan-Mascaros, Jose .
NATURE ENERGY, 2019, 4 (06) :519-525
[7]   Spin dependent interactions catalyse the oxygen electrochemistry [J].
Gracia, J. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2017, 19 (31) :20451-20456
[8]   Anionic redox processes for electrochemical devices [J].
Grimaud, A. ;
Hong, W. T. ;
Shao-Horn, Y. ;
Tarascon, J. -M. .
NATURE MATERIALS, 2016, 15 (02) :121-126
[9]  
Grimaud A, 2017, NAT CHEM, V9, P457, DOI [10.1038/NCHEM.2695, 10.1038/nchem.2695]
[10]   Beyond the volcano limitations in electrocatalysis - oxygen evolution reaction [J].
Halck, Niels Bendtsen ;
Petrykin, Valery ;
Krtil, Petr ;
Rossmeisl, Jan .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (27) :13682-13688