Thermodynamic properties of the 2D frustrated Heisenberg model for the entire J1-J2 circle

被引:9
作者
Mikheyenkov, A. V. [1 ,2 ,3 ]
Shvartsberg, A. V. [2 ]
Valiulin, V. E. [2 ]
Barabanov, A. F. [1 ]
机构
[1] RAS, Inst High Pressure Phys, Troitsk 142190, Russia
[2] Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Russia
[3] Natl Res Ctr, Kurchatov Inst, Moscow 123182, Russia
基金
俄罗斯科学基金会; 俄罗斯基础研究基金会;
关键词
Heisenberg model; Square lattice; Frustration; Thermodynamic properties; GREEN-FUNCTION THEORY; SQUARE LATTICE; MONTE-CARLO; SPIN CORRELATIONS; PHASE-DIAGRAM; ANTIFERROMAGNET; FERROMAGNETS; ORDER; STATE; WAVE;
D O I
10.1016/j.jmmm.2016.06.014
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Using the spherically symmetric self-consistent Green's function method, we consider thermodynamic properties of the S = 1/2 J(1)-J(2) Heisenberg model on the 2D square lattice. We calculate the temperature dependence of the spin-spin correlation functions c(r) = <(S0Srz)-S-z >, the gaps in the spin excitation spectrum, the energy E and the heat capacity C-V for the whole J(1)-J(2)-circle, i.e. for arbitrary phi, J(1) = cos(phi), J(2) = sin(phi). Due to low dimension there is no long-range order at T not equal 0, but the short-range holds the memory of the parent zero-temperature ordered phase (antiferromagnetic, stripe or ferromagnetic). E(phi) and C-V(phi) demonstrate extrema "above" the long-range ordered phases and in the regions of rapid short-range rearranging. Tracts of c(r) (phi) lines have several nodes leading to nonmonotonic c(r) (T) dependence. For any fixed phi the heat capacity C-V(T) always has maximum, tending to zero at T -> 0, in the narrow vicinity of phi = 155 degrees it exhibits an additional frustration-induced low-temperature maximum. We have also found the nonmonotonic behaviour of the spin gaps at phi = 270 degrees +/- 0 and exponentially small antiferromagnetic gap up to (T less than or similar to 0.5) for phi greater than or similar to 270 degrees. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:131 / 139
页数:9
相关论文
共 72 条
[1]  
[Anonymous], 2013, FRUSTRATED SPIN SYST
[2]   Thermodynamics of low-dimensional spin-1/2 Heisenberg ferromagnets in an external magnetic field within a Green function formalism [J].
Antsygina, T. N. ;
Poltavskaya, M. I. ;
Poltavsky, I. I. ;
Chishko, K. A. .
PHYSICAL REVIEW B, 2008, 77 (02)
[3]   Frustrated quantum two-dimensional J 1-J 2-J 3 antiferromagnet in a spherically symmetric self-consistent approach [J].
Barabanov, A. F. ;
Mikheenkov, A. V. ;
Shvartsberg, A. V. .
THEORETICAL AND MATHEMATICAL PHYSICS, 2011, 168 (03) :1192-1215
[4]  
Barabanov A. F., J EXP THEOR PHYS, V79
[5]   ON THE THEORY OF THE 2-DIMENSIONAL HEISENBERG-ANTIFERROMAGNET WITH FRUSTRATION ON A SQUARE LATTICE [J].
BARABANOV, AF ;
BERESOVSKY, VM .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1994, 63 (11) :3974-3982
[6]   Resonating valence bond wave functions for strongly frustrated spin systems [J].
Capriotti, L ;
Becca, F ;
Parola, A ;
Sorella, S .
PHYSICAL REVIEW LETTERS, 2001, 87 (09) :972011-972014
[7]   POSSIBLE SPIN-LIQUID STATE AT LARGE S FOR THE FRUSTRATED SQUARE HEISENBERG LATTICE [J].
CHANDRA, P ;
DOUCOT, B .
PHYSICAL REVIEW B, 1988, 38 (13) :9335-9338
[8]   QUANTUM MONTE-CARLO STUDY OF THE SPIN-1/2 HEISENBERG-MODEL [J].
CHEN, YC ;
CHEN, HH ;
LEE, F .
PHYSICAL REVIEW B, 1991, 43 (13) :11082-11087
[9]   Two-dimensional frustrated Heisenberg model: Variational study [J].
Dmitriev, DV ;
Krivnov, VY ;
Ovchinnikov, AA .
PHYSICAL REVIEW B, 1997, 55 (06) :3620-3626
[10]   FERROMAGNETIC COUPLING IN NONMETALLIC CU2+ COMPOUNDS [J].
FELDKEMPER, S ;
WEBER, W ;
SCHULENBURG, J ;
RICHTER, J .
PHYSICAL REVIEW B, 1995, 52 (01) :313-323