Numerical solutions of space-fractional diffusion equations via the exponential decay kernel

被引:12
作者
Alqhtani, Manal [1 ]
Saad, Khaled M. [1 ]
机构
[1] Najran Univ, Coll Sci & Arts, Dept Math, Najran, Saudi Arabia
来源
AIMS MATHEMATICS | 2022年 / 7卷 / 04期
关键词
power law kernel; exponential decay kernel; Mittag-Leffler kernel; Chebyshev polynomials approximation; finite difference method; space fractional Fisher equations;
D O I
10.3934/math.2022364
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main object of this paper is to investigate the spectral collocation method for three new models of space fractional Fisher equations based on the exponential decay kernel, for which properties of Chebyshev polynomials are utilized to reduce these models to a set of differential equations. We then numerically solve these differential equations using finite differences, with the resulting algebraic equations solved using Newton's method. The accuracy of the numerical solution is verified by computing the residual error function. Additionally, the numerical results are compared with other results obtained using the power law kernel and the Mittag-Leffler kernel. The advantage of the present work stems from the use of spectral methods, which have high accuracy and exponential convergence for problems with smooth solutions. The numerical solutions based on Chebyshev polynomials are in remarkably good agreement with numerical solutions obtained using the power law and the Mittag-Leffler kernels. Mathematica was used to obtain the numerical solutions.
引用
收藏
页码:6535 / 6549
页数:15
相关论文
共 33 条
  • [1] A Numerical Approach of a Time Fractional Reaction-Diffusion Model with a Non-Singular Kernel
    Akram, Tayyaba
    Abbas, Muhammad
    Ali, Ajmal
    Iqbal, Azhar
    Baleanu, Dumitru
    [J]. SYMMETRY-BASEL, 2020, 12 (10): : 1 - 19
  • [2] Al-salti N., 2016, PROGR FRACT DIFFER A, V2, P257, DOI DOI 10.18576/PFDA/020403
  • [3] Spectral Galerkin schemes for a class of multi-order fractional pantograph equations
    Alsuyuti, M. M.
    Doha, E. H.
    Ezz-Eldien, S. S.
    Youssef, I. K.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 384
  • [4] Numerical approximation of Riemann-Liouville definition of fractional derivative: From Riemann-Liouville to Atangana-Baleanu
    Atangana, Abdon
    Gomez-Aguilar, J. F.
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2018, 34 (05) : 1502 - 1523
  • [5] BHRAWY AH, 2013, ADV DIFFER EQS, V1, P1, DOI DOI 10.1155/2013/176730
  • [6] Caputo M., 2015, Prog. Fract. Differ. Appl, V1, P73, DOI [10.12785/pfda/010201, DOI 10.12785/PFDA/010201]
  • [7] Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative
    Celik, Cem
    Duman, Melda
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (04) : 1743 - 1750
  • [8] A COMPARATIVE STUDY OF SEMI-ANALYTICAL METHODS FOR SOLVING FRACTIONAL-ORDER CAUCHY REACTION-DIFFUSION EQUATION
    Chu, Yu-Ming
    Shah, Nehad Ali
    Ahmad, Hijaz
    Chung, Jae Dong
    Khaled, S. M.
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2021, 29 (06)
  • [9] A Legendre spectral-finite difference method for Caputo-Fabrizio time-fractional distributed-order diffusion equation
    Fardi, M.
    Alidousti, J.
    [J]. MATHEMATICAL SCIENCES, 2022, 16 (04) : 417 - 430
  • [10] Handan C.Y., 2017, J ENG TECHNOL APPL S, V28, P1, DOI DOI 10.30931/JETAS.304377