Band gap formation in graphene by in-situ doping

被引:8
作者
Park, Jeongho [1 ]
Mitchel, W. C. [1 ]
Brown, Gail J. [1 ]
Elhamri, Said [2 ]
Grazulis, Lawrence [1 ]
Smith, Howard E. [1 ]
Pacley, Shanee D. [1 ]
Boeckl, John J. [1 ]
Eyink, Kurt G. [1 ]
Mou, Shin [1 ]
Tomich, David H. [1 ]
Hoelscher, John E. [1 ]
机构
[1] USAF, Res Lab, Mat & Mfg Directorate AFRL RXPS, Wright Patterson AFB, OH 45433 USA
[2] Univ Dayton, Dept Phys, Dayton, OH 45469 USA
关键词
BILAYER GRAPHENE;
D O I
10.1063/1.3589364
中图分类号
O59 [应用物理学];
学科分类号
摘要
We report the formation of band gaps in as-grown stacks of epitaxial graphene with opposite doping. Control of in-situ doping during carbon source molecular beam epitaxy growth on SiC was achieved by using different carbon sources. Doping heterostructures were grown by stacking n-type material from a C(60) source on p-type material from a graphite filament source. Activation energies for the resistivity and carrier concentration indicated band gaps up to 200 meV. A photoconductivity threshold was observed in the range of the electrical activation energies. Band gap formation is attributed to electric fields induced by spatially separated ionized dopants of opposite charge. (C) 2011 American Institute of Physics. [doi:10.1063/1.3589364]
引用
收藏
页数:3
相关论文
共 14 条
  • [1] Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect
    Castro, Eduardo V.
    Novoselov, K. S.
    Morozov, S. V.
    Peres, N. M. R.
    Dos Santos, J. M. B. Lopes
    Nilsson, Johan
    Guinea, F.
    Geim, A. K.
    Castro Neto, A. H.
    [J]. PHYSICAL REVIEW LETTERS, 2007, 99 (21)
  • [2] The electronic properties of graphene
    Castro Neto, A. H.
    Guinea, F.
    Peres, N. M. R.
    Novoselov, K. S.
    Geim, A. K.
    [J]. REVIEWS OF MODERN PHYSICS, 2009, 81 (01) : 109 - 162
  • [3] Energy band-gap engineering of graphene nanoribbons
    Han, Melinda Y.
    Oezyilmaz, Barbaros
    Zhang, Yuanbo
    Kim, Philip
    [J]. PHYSICAL REVIEW LETTERS, 2007, 98 (20)
  • [4] Electrical Conduction Mechanism in Chemically Derived Graphene Monolayers
    Kaiser, Alan B.
    Gomez-Navarro, Cristina
    Sundaram, Ravi S.
    Burghard, Marko
    Kern, Klaus
    [J]. NANO LETTERS, 2009, 9 (05) : 1787 - 1792
  • [5] Observation of an Electric-Field-Induced Band Gap in Bilayer Graphene by Infrared Spectroscopy
    Mak, Kin Fai
    Lui, Chun Hung
    Shan, Jie
    Heinz, Tony F.
    [J]. PHYSICAL REVIEW LETTERS, 2009, 102 (25)
  • [6] Landau-level degeneracy and quantum hall effect in a graphite bilayer
    McCann, E
    Fal'ko, VI
    [J]. PHYSICAL REVIEW LETTERS, 2006, 96 (08) : 1 - 4
  • [7] Intrinsic and Rashba spin-orbit interactions in graphene sheets
    Min, Hongki
    Hill, J. E.
    Sinitsyn, N. A.
    Sahu, B. R.
    Kleinman, Leonard
    MacDonald, A. H.
    [J]. PHYSICAL REVIEW B, 2006, 74 (16):
  • [8] Controlling the electronic structure of bilayer graphene
    Advanced Light Source, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, United States
    不详
    不详
    [J]. Science, 2006, 5789 (951-954) : 951 - 954
  • [9] Gate-induced insulating state in bilayer graphene devices
    Oostinga, Jeroen B.
    Heersche, Hubert B.
    Liu, Xinglan
    Morpurgo, Alberto F.
    Vandersypen, Lieven M. K.
    [J]. NATURE MATERIALS, 2008, 7 (02) : 151 - 157
  • [10] Epitaxial Graphene Growth by Carbon Molecular Beam Epitaxy (CMBE)
    Park, Jeongho
    Mitchel, William C.
    Grazulis, Lawrence
    Smith, Howard E.
    Eyink, Kurt G.
    Boeckl, John J.
    Tomich, David H.
    Pacley, Shanee D.
    Hoelscher, John E.
    [J]. ADVANCED MATERIALS, 2010, 22 (37) : 4140 - +