NONNEGATIVITY AND WELL-POSEDNESS OF THE REGULAR SOLUTION OF THE MAGNETIZED BOLTZMANN EQUATION

被引:0
作者
Dongo, David [1 ]
Djiofack, Francis Etienne [1 ]
机构
[1] Univ Dschang, Fac Sci, Dept Math & Comp Sci, POB 67, Dschang, Cameroon
关键词
relativistic Boltzmann equation; nonnegativity; well-posedness; regular solution; GLOBAL EXISTENCE; COSMOLOGICAL CONSTANT; SYSTEM; STABILITY;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove, in this paper, the well-posedness and nonnegativity of the regular solution of the relativistic Boltzmann equation in the presence of a given electromagnetic field, taking as background a Lorentzian space-time which is of type Bianchi I with locally rotational symmetry.
引用
收藏
页码:193 / 208
页数:16
相关论文
共 23 条
[1]  
[Anonymous], 2015, INT J PHYS MATH SCI
[2]  
[Anonymous], 2017, J ADV MATH
[3]  
Ayissi Raoul Domingo, 2013, International Journal of Research and Reviews in Applied Sciences, V14, P276
[4]  
Ayissi RD, 2013, COMMUN MATH APPL, V4, P93
[5]   Bianchi type-I magnetized cosmological models for the Einstein-Boltzmann equation with the cosmological constant [J].
Ayissi, Raoul Domingo ;
Noutchegueme, Norbert .
JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (01)
[6]   EXISTENCE, UNIQUENESS, AND LOCAL STABILITY FOR EINSTEIN-MAXWELL-BOLTZMAN SYSTEM [J].
BANCEL, D ;
CHOQUETB.Y .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1973, 33 (02) :83-96
[7]  
Bichteler K., 1967, COMMUN MATH PHYS, V4, P352
[8]  
Choquet Bruhat Y., 1981, ACTA MATH, V146, P129
[9]   FR CAUCHY-PROBLEM FOR EINSTEIN-LIOUVILLE DIFFERENTIAL INTEGRAL SYSTEM [J].
CHOQUETBRUHAT, Y .
ANNALES DE L INSTITUT FOURIER, 1971, 21 (03) :181-+
[10]  
Glassey R. T., 1993, LECT NOTES CAUCHY PR