Towards for Using Spectral Clustering in Graph Mining

被引:2
|
作者
Ait El Mouden, Z. [1 ]
Moulay Taj, R. [2 ]
Jakimi, A. [1 ]
Hajar, M. [2 ]
机构
[1] UMI, FSTE, Software Engn & Informat Syst Engn Team, Errachidia, Morocco
[2] UMI, FSTE, Operat Res & Comp Sci Team, Errachidia, Morocco
来源
BIG DATA, CLOUD AND APPLICATIONS, BDCA 2018 | 2018年 / 872卷
关键词
Community detection; Spectral clustering; Laplacian matrices; Similarity graphs;
D O I
10.1007/978-3-319-96292-4_12
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents an approach of community detection from data modeled by graphs, using the Spectral Clustering (SC) algorithms, and based on a matrix representation of the graphs. We will focus on the use of Laplacian matrices afterwards. The spectral analysis of those matrices can give us interesting details about the processed graph. The input of the process is a set of data and the output will be a set of communities or clusters that regroup the input data, by starting with the graphical modeling of the data and going through the matrix representation of the similarity graph, then the spectral analysis of the Laplacian matrices, the process will finish with the results interpretation.
引用
收藏
页码:144 / 159
页数:16
相关论文
共 50 条
  • [41] Certifying Global Optimality of Graph Cuts via Semidefinite Relaxation: A Performance Guarantee for Spectral Clustering
    Shuyang Ling
    Thomas Strohmer
    Foundations of Computational Mathematics, 2020, 20 : 367 - 421
  • [42] GRAPH-BASED WEB VIDEO SEARCH RERANKING THROUGH CONSISTENCY ANALYSIS USING SPECTRAL CLUSTERING
    Yoshida, Soh
    Ogawa, Takahiro
    Haseyaina, Miki
    2016 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO (ICME), 2016,
  • [43] Minimum spectral connectivity projection pursuitDivisive clustering using optimal projections for spectral clustering
    David P. Hofmeyr
    Nicos G. Pavlidis
    Idris A. Eckley
    Statistics and Computing, 2019, 29 : 391 - 414
  • [44] Multi-graph fusion for multi-view spectral clustering
    Kang, Zhao
    Shi, Guoxin
    Huang, Shudong
    Chen, Wenyu
    Pu, Xiaorong
    Zhou, Joey Tianyi
    Xu, Zenglin
    KNOWLEDGE-BASED SYSTEMS, 2020, 189
  • [45] Multi-view spectral clustering via sparse graph learning
    Hu, Zhanxuan
    Nie, Feiping
    Chang, Wei
    Hao, Shuzheng
    Wang, Rong
    Li, Xuelong
    NEUROCOMPUTING, 2020, 384 : 1 - 10
  • [46] Fast spectral clustering method based on graph similarity matrix completion
    Ma, Xu
    Zhang, Shengen
    Pena-Pena, Karelia
    Arce, Gonzalo R.
    SIGNAL PROCESSING, 2021, 189
  • [47] Adaptive graph fusion learning for multi-view spectral clustering
    Zhou, Bo
    Liu, Wenliang
    Shen, Meizhou
    Lu, Zhengyu
    Zhang, Wenzhen
    Zhang, Luyun
    PATTERN RECOGNITION LETTERS, 2023, 176 : 102 - 108
  • [48] Spectral Clustering with Sparse Graph Construction Based on Markov Random Walk
    Cao, Jiangzhong
    Chen, Pei
    Ling, Bingo Wing-Kuen
    Yang, Zhijing
    Dai, Qingyun
    KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2015, 9 (07): : 2568 - 2584
  • [49] Fast Compressive Spectral Clustering for Large-Scale Sparse Graph
    Li, Ting
    Zhang, Yiming
    Liu, Hao
    Xue, Guangtao
    Liu, Ling
    IEEE TRANSACTIONS ON BIG DATA, 2022, 8 (01) : 193 - 202
  • [50] COMMUNITY DETECTION USING SPECTRAL CLUSTERING ON SPARSE GEOSOCIAL DATA
    van Gennip, Yves
    Hunter, Blake
    Ahn, Raymond
    Elliott, Peter
    Luh, Kyle
    Halvorson, Megan
    Reid, Shannon
    Valasik, Matthew
    Wo, James
    Tita, George E.
    Bertozzi, Andrea L.
    Brantingham, P. Jeffrey
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2013, 73 (01) : 67 - 83