Shared Shape Spaces

被引:0
|
作者
Prisacariu, Victor Adrian [1 ]
Reid, Ian [1 ]
机构
[1] Univ Oxford, Oxford OX1 2JD, England
来源
2011 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV) | 2011年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a method for simultaneous shape-constrained segmentation and parameter recovery. The parameters can describe anything from 3D shape to 3D pose and we place no restriction on the topology of the shapes, i.e. they can have holes or be made of multiple parts. We use Shared Gaussian Process Latent Variable Models to learn multimodal shape-parameter spaces. These allow non-linear embeddings of the high-dimensional shape and parameter spaces in low dimensional spaces in a fully probabilistic manner. We propose a method for exploring the multimodality in the joint space in an efficient manner, by learning a mapping from the latent space to a space that encodes the similarity between shapes. We further extend the SGP-LVM to a model that makes use of a hierarchy of embeddings and show that this yields faster convergence and greater accuracy over the standard non-hierarchical embedding. Shapes are represented implicitly using level sets, and inference is made tractable by compressing the level set embedding functions with discrete cosine transforms. We show state of the art results in various fields, ranging from pose recovery to gaze tracking and to monocular 3D reconstruction.
引用
收藏
页码:2587 / 2594
页数:8
相关论文
共 50 条
  • [41] ON GEODESICS IN EUCLIDEAN SHAPE SPACES
    LE, HL
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1991, 44 : 360 - 372
  • [42] Suitable Spaces for Shape Optimization
    Welker, Kathrin
    Applied Mathematics and Optimization, 2021, 84 : 869 - 902
  • [43] MOVABILITY AND SHAPE OF DECOMPOSITION SPACES
    DYDAK, J
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1975, 23 (04): : 447 - 452
  • [44] Morphological Exploration of Shape Spaces
    Angulo, Jesus
    Meyer, Fernand
    MATHEMATICAL MORPHOLOGY AND ITS APPLICATION TO SIGNAL AND IMAGE PROCESSING, 2009, 5720 : 226 - 237
  • [45] Density codes and shape spaces
    Courrieu, Pierre
    NEURAL NETWORKS, 2006, 19 (04) : 429 - 445
  • [46] Shape index in metric spaces
    del Portal, FR
    Salazar, JM
    FUNDAMENTA MATHEMATICAE, 2003, 176 (01) : 47 - 62
  • [47] Suitable Spaces for Shape Optimization
    Kathrin Welker
    Applied Mathematics & Optimization, 2021, 84 : 869 - 902
  • [48] BROWNIAN MOTIONS ON SHAPE AND SIZE-AND-SHAPE SPACES
    LE, HL
    JOURNAL OF APPLIED PROBABILITY, 1994, 31 (01) : 101 - 113
  • [49] Shape distances, shape spaces and the comparison of morphometric methods
    Monteiro, LR
    Bordin, B
    dos Reis, SF
    TRENDS IN ECOLOGY & EVOLUTION, 2000, 15 (06) : 217 - 220
  • [50] Editorial overview: mentoring through shared spaces
    Templeton, Nathan R. R.
    Donop, Jordan
    Jeong, Shinhee
    Kannan, Supritha
    MENTORING & TUTORING, 2023, 31 (04): : 441 - 445