On the constructive inverse problem in differential Galois theory

被引:2
作者
Cook, WJ
Mitschi, C
Singer, MF
机构
[1] N Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
[2] Univ Strasbourg, Inst Rech Math Avancee, Strasbourg, France
[3] N Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
基金
美国国家科学基金会;
关键词
Galois theory; inverse problem; linear differential equations; Picard-Vessiot;
D O I
10.1080/00927870500243304
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give sufficient conditions for a differential equation to have a given semisimple group as its Galois group. For any group G with G(0) = G(1) - - - - - G(r), where each G(i) is a simple group of type A(l), C-l, D-l, E-6, or E-7, we construct a differential equation over C(x) having Galois group G.
引用
收藏
页码:3639 / 3665
页数:27
相关论文
共 22 条
[1]  
BABBITT DG, 1983, PAC J MATH, V109, P1
[2]  
Borel A., 1964, Comment. Math. Helv., V39, P111, DOI 10.1007/BF02566948
[3]  
Bourbaki N., 1990, Groupes et algebres de Lie
[4]  
Fulton W., 1991, REPRESENTATION THEOR, V129
[5]  
HARTMANN J, 2002, THESIS U HEIDELBERG
[6]  
HOCHSCHILD G, 1976, BASIC THEORY ALGEBRA, V75
[7]  
Hrushovski E., 2002, Banach Center Publ, V58, P97, DOI [10.4064/bc58-0-9, DOI 10.4064/BC58-0-9]
[8]  
Humphreys J. E., 1975, Graduate texts in mathematics, V21
[9]   ON THE CALCULATION OF SOME DIFFERENTIAL GALOIS-GROUPS [J].
KATZ, NM .
INVENTIONES MATHEMATICAE, 1987, 87 (01) :13-61
[10]   ALGEBRAIC GROUPS AND ALGEBRAIC DEPENDENCE [J].
KOLCHIN, ER .
AMERICAN JOURNAL OF MATHEMATICS, 1968, 90 (04) :1151-&