Relative Fisher information of discrete classical orthogonal polynomials

被引:1
作者
Dehesa, J. S. [1 ,2 ]
Sanchez-Moreno, P. [1 ,3 ]
Yanez, R. J. [1 ,3 ]
机构
[1] Univ Granada, Inst Carlos I Theoret & Computat Phys, Granada, Spain
[2] Univ Granada, Dept Atom Mol & Nucl Phys, Granada, Spain
[3] Univ Granada, Dept Appl Math, Granada, Spain
关键词
relative Fisher information; discrete classical orthogonal polynomials; Charlier; Meixner; Kravchuk; Hahn; HARMONIC-OSCILLATOR; HYPERGEOMETRIC POLYNOMIALS; SCHRODINGER-EQUATION; ENTROPY; ASYMPTOTICS; POTENTIALS; WEIGHTS; SYSTEMS; MODEL;
D O I
10.1080/10236198.2010.510520
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The analytic information theory of discrete distributions was initiated in 1998 by C. Knessl, P. Jacquet and S. Szpankowski who addressed the precise evaluation of the Renyi and Shannon entropies of the Poisson, Pascal (or negative binomial) and binomial distributions. They were able to derive various asymptotic approximations and, at times, lower and upper bounds for these quantities. Here, we extend these investigations in a twofold way. First, we consider a much larger class of distributions, the Rakhmanov distributions rho(n)(x) = omega(x)y(n)(2)(x), where {y(n)(x)} denote the sequences of discrete hypergeometric-type polynomials that are orthogonal with respect to the weight function omega(x) of Poisson, Pascal, binomial and hypergeometric types, i.e. the polynomials of Charlier, Meixner, Kravchuk and Hahn. Second, we obtain the explicit expressions for the relative Fisher information of these four families of Rakhmanov distributions with respect to their respective weight functions.
引用
收藏
页码:489 / 508
页数:20
相关论文
共 54 条
[11]   Discrete Entropies of Orthogonal Polynomials [J].
Aptekarev, A. I. ;
Dehesa, J. S. ;
Martinez-Finkelshtein, A. ;
Yanez, R. .
CONSTRUCTIVE APPROXIMATION, 2009, 30 (01) :93-119
[12]   ASYMPTOTIC-BEHAVIOR OF THE L(P)-NORMS AND THE ENTROPY FOR GENERAL ORTHOGONAL POLYNOMIALS [J].
APTEKAREV, AI ;
BUYAROV, VS ;
DEGEZA, IS ;
DEHESA, JS .
RUSSIAN ACADEMY OF SCIENCES SBORNIK MATHEMATICS, 1995, 82 (02) :373-395
[13]   A REALIZATION OF THE Q-HARMONIC OSCILLATOR [J].
ATAKISHIEV, NM ;
SUSLOV, SK .
THEORETICAL AND MATHEMATICAL PHYSICS, 1991, 87 (01) :442-444
[14]   The discretized Schrodinger equation for the finite square well and its relationship to solid-state physics [J].
Boykin, TB ;
Klimeck, G .
EUROPEAN JOURNAL OF PHYSICS, 2005, 26 (05) :865-881
[15]   Computation of the entropy of polynomials orthogonal on an interval [J].
Buyarov, V ;
Dehesa, JS ;
Martínez-Finkelshtein, A ;
Sánchez-Lara, J .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2004, 26 (02) :488-509
[16]   Asymptotics of the information entropy for Jacobi and Laguerre polynomials with varying weights [J].
Buyarov, VS ;
Dehesa, JS ;
Martínez-Finkelshtein, A ;
Saff, EB .
JOURNAL OF APPROXIMATION THEORY, 1999, 99 (01) :153-166
[17]   Chebychev polynomials in a speech recognition model [J].
Carballo, G ;
Alvarez-Nodarse, R ;
Dehesa, JS .
APPLIED MATHEMATICS LETTERS, 2001, 14 (05) :581-585
[18]  
Chihara Theodore S, 2011, An introduction to orthogonal polynomials
[19]   Orthogonal polynomials of a discrete variable as expansion basis sets in quantum mechanics: Hyperquantization algorithm [J].
De Fazio, D ;
Cavalli, S ;
Aquilanti, V .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2003, 93 (02) :91-111
[20]   Parameter-based Fisher's information of orthogonal polynomials [J].
Dehesa, J. S. ;
Olmos, B. ;
Yanez, R. J. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 214 (01) :136-147