TAAL: Test-Time Augmentation for Active Learning in Medical Image Segmentation

被引:16
作者
Gaillochet, Melanie [1 ]
Desrosiers, Christian [1 ]
Lombaert, Herve [1 ]
机构
[1] ETS Montreal, Montreal, PQ, Canada
来源
DATA AUGMENTATION, LABELLING, AND IMPERFECTIONS (DALI 2022) | 2022年 / 13567卷
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1007/978-3-031-17027-0_5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep learning methods typically depend on the availability of labeled data, which is expensive and time-consuming to obtain. Active learning addresses such effort by prioritizing which samples are best to annotate in order to maximize the performance of the task model. While frameworks for active learning have been widely explored in the context of classification of natural images, they have been only sparsely used in medical image segmentation. The challenge resides in obtaining an uncertainty measure that reveals the best candidate data for annotation. This paper proposes Test-time Augmentation for Active Learning (TAAL), a novel semi-supervised active learning approach for segmentation that exploits the uncertainty information offered by data transformations. Our method applies cross-augmentation consistency during training and inference to both improve model learning in a semi-supervised fashion and identify the most relevant unlabeled samples to annotate next. In addition, our consistency loss uses a modified version of the JSD to further improve model performance. By relying on data transformations rather than on external modules or simple heuristics typically used in uncertainty-based strategies, TAAL emerges as a simple, yet powerful task-agnostic semi-supervised active learning approach applicable to the medical domain. Our results on a publicly-available dataset of cardiac images show that TAAL outperforms existing baseline methods in both fully-supervised and semi-supervised settings. Our implementation is publicly available on https://github.com/melinphd/TAAL.
引用
收藏
页码:43 / 53
页数:11
相关论文
共 31 条
[1]  
Ash J. T., 2020, P INT C LEARN REPR, P1
[2]  
Ayhan M.S., 2018, Medical Imaging with Deep Learning
[3]   The power of ensembles for active learning in image classification [J].
Beluch, William H. ;
Genewein, Tim ;
Nuernberger, Andreas ;
Koehler, Jan M. .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :9368-9377
[4]   Deep Learning Techniques for Automatic MRI Cardiac Multi-Structures Segmentation and Diagnosis: Is the Problem Solved? [J].
Bernard, Olivier ;
Lalande, Alain ;
Zotti, Clement ;
Cervenansky, Frederick ;
Yang, Xin ;
Heng, Pheng-Ann ;
Cetin, Irem ;
Lekadir, Karim ;
Camara, Oscar ;
Gonzalez Ballester, Miguel Angel ;
Sanroma, Gerard ;
Napel, Sandy ;
Petersen, Steffen ;
Tziritas, Georgios ;
Grinias, Elias ;
Khened, Mahendra ;
Kollerathu, Varghese Alex ;
Krishnamurthi, Ganapathy ;
Rohe, Marc-Michel ;
Pennec, Xavier ;
Sermesant, Maxime ;
Isensee, Fabian ;
Jaeger, Paul ;
Maier-Hein, Klaus H. ;
Full, Peter M. ;
Wolf, Ivo ;
Engelhardt, Sandy ;
Baumgartner, Christian F. ;
Koch, Lisa M. ;
Wolterink, Jelmer M. ;
Isgum, Ivana ;
Jang, Yeonggul ;
Hong, Yoonmi ;
Patravali, Jay ;
Jain, Shubham ;
Humbert, Olivier ;
Jodoin, Pierre-Marc .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (11) :2514-2525
[5]  
Berthelot D, 2019, ADV NEUR IN, V32
[6]   A survey on active learning and human-in-the-loop deep learning for medical image analysis [J].
Budd, Samuel ;
Robinson, Emma C. ;
Kainz, Bernhard .
MEDICAL IMAGE ANALYSIS, 2021, 71
[7]   Quantitative Comparison of Monte-Carlo Dropout Uncertainty Measures for Multi-class Segmentation [J].
Camarasa, Robin ;
Bos, Daniel ;
Hendrikse, Jeroen ;
Nederkoorn, Paul ;
Kooi, Eline ;
van der Lugt, Aad ;
de Bruijne, Marleen .
UNCERTAINTY FOR SAFE UTILIZATION OF MACHINE LEARNING IN MEDICAL IMAGING, AND GRAPHS IN BIOMEDICAL IMAGE ANALYSIS, UNSURE 2020, GRAIL 2020, 2020, 12443 :32-41
[8]  
Casanova A., 2019, INT C LEARNING REPRE
[9]   Semi-supervised Brain Lesion Segmentation with an Adapted Mean Teacher Model [J].
Cui, Wenhui ;
Liu, Yanlin ;
Li, Yuxing ;
Guo, Menghao ;
Li, Yiming ;
Li, Xiuli ;
Wang, Tianle ;
Zeng, Xiangzhu ;
Ye, Chuyang .
INFORMATION PROCESSING IN MEDICAL IMAGING, IPMI 2019, 2019, 11492 :554-565
[10]  
Gal Y, 2017, PR MACH LEARN RES, V70