Dirac particle in the presence of a plane waveand constant magnetic fields: path integral approach

被引:3
|
作者
Bourouaine, S [1 ]
机构
[1] Mentouri Univ, Fac Sci, Dept Phys, Constantine, Algeria
来源
EUROPEAN PHYSICAL JOURNAL C | 2005年 / 44卷 / 01期
关键词
D O I
10.1140/epjc/s2005-02352-4
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The Green function (GF) related to the problem of a Dirac particle interacting with a plane wave and constant magnetic fields is calculated in the framework of a path integral via the Alexandrou et al. formalism according to the so-called global projection. As a calculation tool, we introduce two identities (constraints) into this formalism; their main role is the reduction of the dimension of the integral and the emergence in a natural way of some classical paths and, due to the existence of a constant electromagnetic field, we have used the technique of fluctuations. Hence the calculation of the GF is reduced to a known Gaussian integral plus a contribution from the effective classical action.
引用
收藏
页码:131 / 137
页数:7
相关论文
共 50 条
  • [1] Dirac particle in the presence of a plane waveand constant magnetic fields: path integral approach
    S. Bourouaine
    The European Physical Journal C - Particles and Fields, 2005, 44 : 131 - 137
  • [2] Dirac particle in a constant magnetic field: Path integral treatment
    Merdaci, Abdeldjalil
    Boudiaf, Nadira
    Chetouani, Lyazid
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2008, 63 (5-6): : 283 - 290
  • [3] Exact Green Function for a Dirac Particle in Presence of Two Orthogonal Plane Wave Fields. Path Integral Derivation
    H. K. Ould-Lahoucine
    L. Chetouani
    International Journal of Theoretical Physics, 2012, 51 : 2208 - 2219
  • [4] Exact Green Function for a Dirac Particle in Presence of Two Orthogonal Plane Wave Fields. Path Integral Derivation
    Ould-Lahoucine, H. K.
    Chetouani, L.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2012, 51 (07) : 2208 - 2219
  • [5] Path integral for Dirac particle in plane wave field
    Zeggari, S
    Boudjedaa, T
    Chetouani, L
    PHYSICA SCRIPTA, 2001, 64 (04): : 285 - 291
  • [6] PROPAGATION OF A DIRAC PARTICLE - A PATH INTEGRAL APPROACH
    ICHINOSE, T
    TAMURA, H
    JOURNAL OF MATHEMATICAL PHYSICS, 1984, 25 (06) : 1810 - 1819
  • [7] Path integral solution for Dirac particle in a constant electric field
    Boudiaf, N.
    Merdaci, A.
    Chetouani, L.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (01)
  • [8] Path integral for a Dirac particle in a quantized plane wave field
    B. Bentag
    A. Merdaci
    L. Chetouani
    The European Physical Journal C - Particles and Fields, 2002, 26 : 311 - 320
  • [9] Path integral for a Dirac particle in a quantized plane wave field
    Bentag, B
    Merdaci, A
    Chetouani, L
    EUROPEAN PHYSICAL JOURNAL C, 2002, 26 (02): : 311 - 320
  • [10] Path integral for confined Dirac fermions in a constant magnetic field
    Merdaci, Abdeldjalil
    Jellal, Ahmed
    Chetouani, Lyazid
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2015, 30 (27):