On asymptotic stability in energy space of ground states of NLS in 1D

被引:22
作者
Cuccagna, Scipio [1 ]
机构
[1] DISMI Univ Modena & Reggio Emilia, I-42100 Reggio Emilia, Italy
关键词
D O I
10.1016/j.jde.2008.02.042
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We transpose work by T. Mizumachi to prove smoothing estimates for dispersive solutions of the linearization at a ground state of a Nonlinear Schrodinger equation (NLS) in 1D. As an application we extend to dimension 1D a result on asymptotic stability of ground states of NILS proved by Cuccagna and Mizumachi for dimensions >= 3. (c) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:653 / 691
页数:39
相关论文
共 33 条
[1]  
[Anonymous], ASYMPTOTIC STABILITY
[2]  
[Anonymous], 1984, APPL MATH SCI
[3]  
[Anonymous], 2002, ADV THEOR MATH PHYS
[4]  
Buslaev V., 1993, St. Petersburg Math. J., V4, P1111
[5]  
Buslaev V.S., 1995, Adv. Math. Sci, V22, P75
[6]   On asymptotic stability of solitary waves for nonlinear Schrodinger equations [J].
Buslaev, VS ;
Sulem, C .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2003, 20 (03) :419-475
[7]   Maximal functions associated to filtrations [J].
Christ, M ;
Kiselev, A .
JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 179 (02) :409-425
[8]   Stability of standing waves for NLS with perturbed Lame potential [J].
Cuccagna, S .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 223 (01) :112-160
[9]   Spectra of positive and negative energies in the linearized NLS problem [J].
Cuccagna, S ;
Pelinovsky, D ;
Vougalter, V .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2005, 58 (01) :1-29
[10]   On asymptotic stability of ground states of NLS [J].
Cuccagna, S .
REVIEWS IN MATHEMATICAL PHYSICS, 2003, 15 (08) :877-903