The Expanding Landscape of Alternative Splicing Variation in Human Populations

被引:237
作者
Park, Eddie [1 ]
Pan, Zhicheng [2 ]
Zhang, Zijun [2 ]
Lin, Lan [1 ]
Xing, Yi [1 ,2 ]
机构
[1] Univ Calif Los Angeles, Dept Microbiol Immunol & Mol Genet, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Bioinformat Interdept Grad Program, Los Angeles, CA 90095 USA
基金
美国国家卫生研究院;
关键词
GENE-EXPRESSION VARIATION; RNA-SEQ; SUSCEPTIBILITY LOCI; TRANSCRIPTOME; IDENTIFICATION; QUANTIFICATION; ASSOCIATION; ELEMENTS; VARIANTS; REVEALS;
D O I
10.1016/j.ajhg.2017.11.002
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Alternative splicing is a tightly regulated biological process by which the number of gene products for any given gene can be greatly expanded. Genomic variants in splicing regulatory sequences can disrupt splicing and cause disease. Recent developments in sequencing technologies and computational biology have allowed researchers to investigate alternative splicing at an unprecedented scale and resolution. Population-scale transcriptome studies have revealed many naturally occurring genetic variants that modulate alternative splicing and consequently influence phenotypic variability and disease susceptibility in human populations. Innovations in experimental and computational tools such as massively parallel reporter assays and deep learning have enabled the rapid screening of genomic variants for their causal impacts on splicing. In this review, we describe technological advances that have greatly increased the speed and scale at which discoveries are made about the genetic variation of alternative splicing. We summarize major findings from population transcriptomic studies of alternative splicing and discuss the implications of these findings for human genetics and medicine.
引用
收藏
页码:11 / 26
页数:16
相关论文
共 126 条
  • [41] BRIE: transcriptome-wide splicing quantification in single cells
    Huang, Yuanhua
    Sanguinetti, Guido
    [J]. GENOME BIOLOGY, 2017, 18
  • [42] Integrative deep models for alternative splicing
    Jha, Anupama
    Gazzara, Matthew R.
    Barash, Yoseph
    [J]. BIOINFORMATICS, 2017, 33 (14) : I274 - I282
  • [43] Mapping Splicing Quantitative Trait Loci in RNA-Seq
    Jia, Cheng
    Hu, Yu
    Liu, Yichuan
    Li, Mingyao
    [J]. CANCER INFORMATICS, 2015, 14 : 45 - 53
  • [44] Johnson N. T, 2017, BIORXIV
  • [45] Functional consequences of developmentally regulated alternative splicing
    Kalsotra, Auinash
    Cooper, Thomas A.
    [J]. NATURE REVIEWS GENETICS, 2011, 12 (10) : 715 - 729
  • [46] Katz Y, 2010, NAT METHODS, V7, P1009, DOI [10.1038/nmeth.1528, 10.1038/NMETH.1528]
  • [47] Function of alternative splicing
    Kelemen, Olga
    Convertini, Paolo
    Zhang, Zhaiyi
    Wen, Yuan
    Shen, Manli
    Falaleeva, Marina
    Stamm, Stefan
    [J]. GENE, 2013, 514 (01) : 1 - 30
  • [48] RNA sequencing reveals the role of splicing polymorphisms in regulating human gene expression
    Lalonde, Emilie
    Ha, Kevin C. H.
    Wang, Zibo
    Bemmo, Amandine
    Kleinman, Claudia L.
    Kwan, Tony
    Pastinen, Tomi
    Majewski, Jacek
    [J]. GENOME RESEARCH, 2011, 21 (04) : 545 - 554
  • [49] Transcriptome and genome sequencing uncovers functional variation in humans
    Lappalainen, Tuuli
    Sammeth, Michael
    Friedlaender, Marc R.
    't Hoen, Peter A. C.
    Monlong, Jean
    Rivas, Manuel A.
    Gonzalez-Porta, Mar
    Kurbatova, Natalja
    Griebel, Thasso
    Ferreira, Pedro G.
    Barann, Matthias
    Wieland, Thomas
    Greger, Liliana
    van Iterson, Maarten
    Almloef, Jonas
    Ribeca, Paolo
    Pulyakhina, Irina
    Esser, Daniela
    Giger, Thomas
    Tikhonov, Andrew
    Sultan, Marc
    Bertier, Gabrielle
    MacArthur, Daniel G.
    Lek, Monkol
    Lizano, Esther
    Buermans, Henk P. J.
    Padioleau, Ismael
    Schwarzmayr, Thomas
    Karlberg, Olof
    Ongen, Halit
    Kilpinen, Helena
    Beltran, Sergi
    Gut, Marta
    Kahlem, Katja
    Amstislavskiy, Vyacheslav
    Stegle, Oliver
    Pirinen, Matti
    Montgomery, Stephen B.
    Donnelly, Peter
    McCarthy, Mark I.
    Flicek, Paul
    Strom, Tim M.
    Lehrach, Hans
    Schreiber, Stefan
    Sudbrak, Ralf
    Carracedo, Angel
    Antonarakis, Stylianos E.
    Haesler, Robert
    Syvaenen, Ann-Christine
    Van Ommen, Gert-Jan
    [J]. NATURE, 2013, 501 (7468) : 506 - 511
  • [50] Deep learning
    LeCun, Yann
    Bengio, Yoshua
    Hinton, Geoffrey
    [J]. NATURE, 2015, 521 (7553) : 436 - 444