Robust stability of cellular neural networks with delay: linear matrix inequality approach

被引:175
作者
Singh, V [1 ]
机构
[1] Atilim Univ, Dept Elect Elect Engn, TR-06836 Ankara, Turkey
来源
IEE PROCEEDINGS-CONTROL THEORY AND APPLICATIONS | 2004年 / 151卷 / 01期
关键词
D O I
10.1049/ip-cta:20040091
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A criterion for the global asymptotic stability and uniqueness of the equilibrium point of uncertain cellular neural networks with delay is presented. The uncertainties are assumed to be norm-bounded. The criterion is computationally efficient, since it is in the form of a linear matrix inequality.
引用
收藏
页码:125 / 129
页数:5
相关论文
共 50 条
[21]  
Gahinet P., 1995, LMI Control Toolbox
[22]   Design of stable cellular neural network templates [J].
Gilli, M .
ELECTRONICS LETTERS, 1999, 35 (12) :986-987
[23]   Robust optimal guaranteed cost control for 2D discrete systems [J].
Guan, X ;
Long, C ;
Duan, G .
IEE PROCEEDINGS-CONTROL THEORY AND APPLICATIONS, 2001, 148 (05) :355-361
[24]   Global asymptotic stability and global exponential stability of continuous-time recurrent neural networks [J].
Hu, SQ ;
Wang, J .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2002, 47 (05) :802-807
[25]   ROBUST STABILIZATION OF UNCERTAIN LINEAR-SYSTEMS - QUADRATIC STABILIZABILITY AND H INFINITY-CONTROL THEORY [J].
KHARGONEKAR, PP ;
PETERSEN, IR ;
ZHOU, KM .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1990, 35 (03) :356-361
[26]   Analog addition/subtraction on the CNN-UM chip with short-time superimposition of input signals [J].
Kim, H ;
Roska, T ;
Son, H ;
Petrás, I .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 2003, 50 (03) :429-432
[27]  
Liao TL, 2000, IEEE T NEURAL NETWOR, V11, P1481, DOI 10.1109/72.883480
[28]   Global stability condition for cellular neural networks with delay [J].
Liao, TL ;
Wang, FC .
ELECTRONICS LETTERS, 1999, 35 (16) :1347-1349
[29]   LMI-Based approach for asymptotically stability analysis of delayed neural networks [J].
Liao, XF ;
Chen, GR ;
Sanchez, EN .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2002, 49 (07) :1033-1039
[30]   Delay-dependent exponential stability analysis of delayed neural networks: an LMI approach [J].
Liao, XF ;
Chen, GR ;
Sanchez, EN .
NEURAL NETWORKS, 2002, 15 (07) :855-866