Object-based urban land cover mapping using high-resolution airborne imagery and LiDAR data

被引:0
|
作者
Li, Qingting [1 ]
Lu, Linlin [1 ]
Jiang, Hao [1 ]
Huang, Jinhua [2 ]
Liu, Zhaohua [2 ]
机构
[1] Chinese Acad Sci, Inst Remote Sensing & Digital Earth, Beijing, Peoples R China
[2] Jiangxi Univ Sci & Technol, Sch Architectural & Surveying & Mapping Engn, Ganzhou, Jiangxi, Peoples R China
来源
2018 FIFTH INTERNATIONAL WORKSHOP ON EARTH OBSERVATION AND REMOTE SENSING APPLICATIONS (EORSA) | 2018年
基金
中国国家自然科学基金;
关键词
urban land cover; LiDAR; high spatial resolution; classification; OBIA; LEVEL FUSION; TIME-SERIES; CLASSIFICATION; INDEX;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Urban land cover information is important for a number of applications. In recent years, the availability of airborne light detection and ranging (LiDAR) and high spatial resolution (HSR) imagery makes it possible to generate land cover information at fine scales. In this study, we proposed an object-based image analysis (OBIA) method to derive 1m resolution land cover classification from airborne LiDAR and multi-spectral image data. A series of rules were developed for identifying 7 land cover features (low impervious cover, buildings, shrub/tree, grass, soil/rock, rivers/lakes, and swimming pool). Experiments were performed in two sites in Richland County, South Carolina, USA. The classification results yielded an overall accuracy of 92.23% and a kappa coefficient of 0.8996. Confusion occurs between soil/rock and grass land and low impervious surface due to their spectral similarity. The algorithm shows promise for large-area classification in forested urban landscapes with similar datasets.
引用
收藏
页码:28 / 32
页数:5
相关论文
共 50 条
  • [21] DISCRETIZATION OF OBJECT-BASED LIDAR FEATURES FOR LAND COVER CLASSIFICATION
    Lin, Yu-Ching
    Lin, Chun-Lin
    Tsai, Ming-Da
    Chou, Lin-Sun
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 1768 - 1771
  • [22] URBAN BUILDING COLLAPSE DETECTION USING VERY HIGH RESOLUTION IMAGERY AND AIRBORNE LIDAR DATA
    Wang, Xue
    Li, Peijun
    3RD ISPRS IWIDF 2013, 2013, 40-7-W1 : 127 - 132
  • [23] Urban Land-Cover Dynamics in Arid China Based on High-Resolution Urban Land Mapping Products
    Pan, Tao
    Lu, Dengsheng
    Zhang, Chi
    Chen, Xi
    Shao, Hua
    Kuang, Wenhui
    Chi, Wenfeng
    Liu, Zhengjia
    Du, Guoming
    Cao, Liangzhong
    REMOTE SENSING, 2017, 9 (07)
  • [24] Cross-sensor domain adaptation for high spatial resolution urban land-cover mapping: From airborne to spaceborne imagery
    Wang, Junjue
    Ma, Ailong
    Zhong, Yanfei
    Zheng, Zhuo
    Zhang, Liangpei
    REMOTE SENSING OF ENVIRONMENT, 2022, 277
  • [25] Integration of orthoimagery and lidar data for object-based urban thematic mapping using random forests
    Guan, Haiyan
    Li, Jonathan
    Chapman, Michael
    Deng, Fei
    Ji, Zheng
    Yang, Xu
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2013, 34 (14) : 5166 - 5186
  • [26] Land Cover/Land Use Mapping of LISS IV Imagery Using Object-Based Convolutional Neural Network with Deep Features
    Rajesh, S.
    Nisia, T. Gladima
    Arivazhagan, S.
    Abisekaraj, R.
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2020, 48 (01) : 145 - 154
  • [27] Exploring the Use of Google Earth Imagery and Object-Based Methods in Land Use/Cover Mapping
    Hu, Qiong
    Wu, Wenbin
    Xia, Tian
    Yu, Qiangyi
    Yang, Peng
    Li, Zhengguo
    Song, Qian
    REMOTE SENSING, 2013, 5 (11) : 6026 - 6042
  • [28] OBJECT BASED IMAGE ANALYSIS COMBINING HIGH SPATIAL RESOLUTION IMAGERY AND LASER POINT CLOUDS FOR URBAN LAND COVER
    Zou, Xiaoliang
    Zhao, Guihua
    Li, Jonathan
    Yang, Yuanxi
    Fang, Yong
    XXIII ISPRS CONGRESS, COMMISSION III, 2016, 41 (B3): : 733 - 739
  • [29] Intelligent Mapping of Urban Forests from High-Resolution Remotely Sensed Imagery Using Object-Based U-Net-DenseNet-Coupled Network
    He, Shaobai
    Du, Huaqiang
    Zhou, Guomo
    Li, Xuejian
    Mao, Fangjie
    Zhu, Di'en
    Xu, Yanxin
    Zhang, Meng
    Huang, Zihao
    Liu, Hua
    Luo, Xin
    REMOTE SENSING, 2020, 12 (23) : 1 - 22
  • [30] High-Resolution Terrain Modeling Using Airborne LiDAR Data with Transfer Learning
    Li, Huxiong
    Ye, Weiya
    Liu, Jun
    Tan, Weikai
    Pirasteh, Saied
    Fatholahi, Sarah Narges
    Li, Jonathan
    REMOTE SENSING, 2021, 13 (17)