Object-based urban land cover mapping using high-resolution airborne imagery and LiDAR data

被引:0
|
作者
Li, Qingting [1 ]
Lu, Linlin [1 ]
Jiang, Hao [1 ]
Huang, Jinhua [2 ]
Liu, Zhaohua [2 ]
机构
[1] Chinese Acad Sci, Inst Remote Sensing & Digital Earth, Beijing, Peoples R China
[2] Jiangxi Univ Sci & Technol, Sch Architectural & Surveying & Mapping Engn, Ganzhou, Jiangxi, Peoples R China
来源
2018 FIFTH INTERNATIONAL WORKSHOP ON EARTH OBSERVATION AND REMOTE SENSING APPLICATIONS (EORSA) | 2018年
基金
中国国家自然科学基金;
关键词
urban land cover; LiDAR; high spatial resolution; classification; OBIA; LEVEL FUSION; TIME-SERIES; CLASSIFICATION; INDEX;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Urban land cover information is important for a number of applications. In recent years, the availability of airborne light detection and ranging (LiDAR) and high spatial resolution (HSR) imagery makes it possible to generate land cover information at fine scales. In this study, we proposed an object-based image analysis (OBIA) method to derive 1m resolution land cover classification from airborne LiDAR and multi-spectral image data. A series of rules were developed for identifying 7 land cover features (low impervious cover, buildings, shrub/tree, grass, soil/rock, rivers/lakes, and swimming pool). Experiments were performed in two sites in Richland County, South Carolina, USA. The classification results yielded an overall accuracy of 92.23% and a kappa coefficient of 0.8996. Confusion occurs between soil/rock and grass land and low impervious surface due to their spectral similarity. The algorithm shows promise for large-area classification in forested urban landscapes with similar datasets.
引用
收藏
页码:28 / 32
页数:5
相关论文
共 50 条
  • [1] Integration of high-resolution imagery and LiDAR data for object-based classification of urban area
    Mehta, A.
    Dikshit, O.
    Venkataramani, K.
    GEOCARTO INTERNATIONAL, 2014, 29 (04) : 418 - 432
  • [2] Object-Based High-Resolution Land-Cover Mapping Operational Considerations
    O'Neil-Dunne, Jarlath
    Pelletier, Keith
    MacFaden, Sean
    Troy, Austin
    Grove, J. Morgan
    2009 17TH INTERNATIONAL CONFERENCE ON GEOINFORMATICS, VOLS 1 AND 2, 2009, : 851 - +
  • [3] Hybrid object-based approach for land use/land cover mapping using high spatial resolution imagery
    Malinverni, Eva Savina
    Tassetti, Anna Nora
    Mancini, Adriano
    Zingaretti, Primo
    Frontoni, Emanuele
    Bernardini, Annamaria
    INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2011, 25 (06) : 1025 - 1043
  • [4] Synergistic Use of LiDAR and APEX Hyperspectral Data for High-Resolution Urban Land Cover Mapping
    Priem, Frederik
    Canters, Frank
    REMOTE SENSING, 2016, 8 (10)
  • [5] Object-based habitat mapping using very high spatial resolution multispectral and hyperspectral imagery with LiDAR data
    Onojeghuo, Alex Okiemute
    Onojeghuo, Ajoke Ruth
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2017, 59 : 79 - 91
  • [6] High-resolution tree canopy mapping for New York City using LIDAR and object-based image analysis
    MacFaden, Sean W.
    O'Neil-Dunne, Jarlath P. M.
    Royar, Anna R.
    Lu, Jacqueline W. T.
    Rundle, Andrew G.
    JOURNAL OF APPLIED REMOTE SENSING, 2012, 6
  • [7] A Hierarchical Object-oriented Urban Land Cover Classification Using WorldView-2 Imagery and Airborne LiDAR data
    Wu, M. F.
    Sun, Z. C.
    Yang, B.
    Yu, S. S.
    6TH DIGITAL EARTH SUMMIT, 2016, 46
  • [8] Hierarchical object-based image analysis of high-resolution imagery for urban land use classification
    Zhan, QM
    Molenaar, M
    Xiao, YH
    IEEE/ISPRS JOINT WORKSHOP ON REMOTE SENSING AND DATA FUSION OVER URBAN AREAS, 2001, : 35 - 39
  • [9] Integrating LiDAR and high-resolution imagery for object-based mapping of forest habitats in a heterogeneous temperate forest landscape
    Gonzalez, Ramiro Silveyra
    Latifi, Hooman
    Weinacker, Holger
    Dees, Matthias
    Koch, Barbara
    Heurich, Marco
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2018, 39 (23) : 8859 - 8884
  • [10] Feature Assessment in Object-based Forest Classification using Airborne LiDAR Data and High Spatial Resolution Satellite Imagery
    Zhang, Zhenyu
    Liu, Xiaoye
    Wright, Wendy
    2014 THIRD INTERNATIONAL WORKSHOP ON EARTH OBSERVATION AND REMOTE SENSING APPLICATIONS (EORSA 2014), 2014,