Object-based urban land cover mapping using high-resolution airborne imagery and LiDAR data

被引:0
作者
Li, Qingting [1 ]
Lu, Linlin [1 ]
Jiang, Hao [1 ]
Huang, Jinhua [2 ]
Liu, Zhaohua [2 ]
机构
[1] Chinese Acad Sci, Inst Remote Sensing & Digital Earth, Beijing, Peoples R China
[2] Jiangxi Univ Sci & Technol, Sch Architectural & Surveying & Mapping Engn, Ganzhou, Jiangxi, Peoples R China
来源
2018 FIFTH INTERNATIONAL WORKSHOP ON EARTH OBSERVATION AND REMOTE SENSING APPLICATIONS (EORSA) | 2018年
基金
中国国家自然科学基金;
关键词
urban land cover; LiDAR; high spatial resolution; classification; OBIA; LEVEL FUSION; TIME-SERIES; CLASSIFICATION; INDEX;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Urban land cover information is important for a number of applications. In recent years, the availability of airborne light detection and ranging (LiDAR) and high spatial resolution (HSR) imagery makes it possible to generate land cover information at fine scales. In this study, we proposed an object-based image analysis (OBIA) method to derive 1m resolution land cover classification from airborne LiDAR and multi-spectral image data. A series of rules were developed for identifying 7 land cover features (low impervious cover, buildings, shrub/tree, grass, soil/rock, rivers/lakes, and swimming pool). Experiments were performed in two sites in Richland County, South Carolina, USA. The classification results yielded an overall accuracy of 92.23% and a kappa coefficient of 0.8996. Confusion occurs between soil/rock and grass land and low impervious surface due to their spectral similarity. The algorithm shows promise for large-area classification in forested urban landscapes with similar datasets.
引用
收藏
页码:28 / 32
页数:5
相关论文
共 26 条
[1]  
Aerial Photography Field Office (APFO), 2013, IM PROGR NAT AGR IM
[2]   Object-based land cover classification using airborne LiDAR [J].
Antonarakis, A. S. ;
Richards, K. S. ;
Brasington, J. .
REMOTE SENSING OF ENVIRONMENT, 2008, 112 (06) :2988-2998
[3]   Robust Extraction of Urban Land Cover Information From HSR Multi-Spectral and LiDAR Data [J].
Berger, Christian ;
Voltersen, Michael ;
Hese, Soeren ;
Walde, Irene ;
Schmullius, Christiane .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2013, 6 (05) :2196-2211
[4]   Object based image analysis for remote sensing [J].
Blaschke, T. .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2010, 65 (01) :2-16
[5]   Object-oriented land cover classification of lidar-derived surfaces [J].
Brennan, R. ;
Webster, T. L. .
CANADIAN JOURNAL OF REMOTE SENSING, 2006, 32 (02) :162-172
[6]   Hierarchical object oriented classification using very high resolution imagery and LIDAR data over urban areas [J].
Chen, Yunhao ;
Su, Wei ;
Li, Jing ;
Sun, Zhongping .
ADVANCES IN SPACE RESEARCH, 2009, 43 (07) :1101-1110
[7]  
Congalton R.G., 2009, ASSESSING ACCURACY R, V2nd, P183, DOI 10.1201/9781420055139
[8]  
Definiens, 2009, ECOGNITION DEV 8
[9]   Global consequences of land use [J].
Foley, JA ;
DeFries, R ;
Asner, GP ;
Barford, C ;
Bonan, G ;
Carpenter, SR ;
Chapin, FS ;
Coe, MT ;
Daily, GC ;
Gibbs, HK ;
Helkowski, JH ;
Holloway, T ;
Howard, EA ;
Kucharik, CJ ;
Monfreda, C ;
Patz, JA ;
Prentice, IC ;
Ramankutty, N ;
Snyder, PK .
SCIENCE, 2005, 309 (5734) :570-574
[10]   Fusion of High Resolution Aerial Multispectral and LiDAR Data: Land Cover in the Context of Urban Mosquito Habitat [J].
Hartfield, Kyle A. ;
Landau, Katheryn I. ;
van Leeuwen, Willem J. D. .
REMOTE SENSING, 2011, 3 (11) :2364-2383