Image fusion with conditional probability networks for monitoring the salinization of farmland

被引:10
作者
Kiiveri, H [1 ]
Caccetta, P [1 ]
机构
[1] Leeuwin Ctr, CSIRO Math & Informat Sci, Floreat, WA 6104, Australia
关键词
satellite imagery; classification; uncertainty; data integration; conditional probability networks; spatial-temporal models; spatial context;
D O I
10.1006/dspr.1998.0320
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We show how a series of satellite images can be used in conjunction with data derived from a digital terrain model to monitor salinity in farmland. A conditional probability network (CPN) is constructed to produce salinity maps by combining uncertain information in images with uncertain knowledge or rules, where the rules are of a temporal and spatial nature. A specific model for extending conditional probability networks to handle the case of spatial context is given. To implement this model requires minor modifications to existing code for handling nonspatial CPN's. (C) 1998 Academic Press.
引用
收藏
页码:225 / 230
页数:6
相关论文
共 15 条
  • [1] [Anonymous], 1992, COMPUTATION STAT
  • [2] BESAG J, 1974, J ROY STAT SOC B MET, V36, P192
  • [3] BESAG J, 1986, J R STAT SOC B, V48, P259
  • [4] Caccetta P., 1995, New Review of Applied Expert Systems, V1, P161
  • [5] CACCETTA P.A., 1997, THESIS CURTIN U TECH
  • [6] MARKOV-FIELDS AND LOG-LINEAR INTERACTION MODELS FOR CONTINGENCY-TABLES
    DARROCH, JN
    LAURITZEN, SL
    SPEED, TP
    [J]. ANNALS OF STATISTICS, 1980, 8 (03) : 522 - 539
  • [7] MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM
    DEMPSTER, AP
    LAIRD, NM
    RUBIN, DB
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01): : 1 - 38
  • [8] STOCHASTIC RELAXATION, GIBBS DISTRIBUTIONS, AND THE BAYESIAN RESTORATION OF IMAGES
    GEMAN, S
    GEMAN, D
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1984, 6 (06) : 721 - 741
  • [9] Jensen F.V., 1996, INTRO BAYESIAN NETWO, V210
  • [10] Kiiveri H.T., 1992, AUST J STAT, V34, P361, DOI [10.1111/j.1467-842X.1992.tb01053.x, DOI 10.1111/J.1467-842X.1992.TB01053.X]