Prospective validation of a model-informed precision dosing tool for vancomycin in intensive care patients

被引:32
作者
ter Heine, Rob [1 ]
Keizer, Ron J. [2 ]
van Steeg, Krista [3 ]
Smolders, Elise J. [1 ,4 ]
van Luin, Matthijs [5 ]
Derijks, Hieronymus J. [6 ,7 ]
de Jager, Cornelis P. C. [8 ]
Frenzel, Tim [9 ]
Bruggemann, Roger [1 ]
机构
[1] Radboud Univ Nijmegen, Radboud Inst Hlth Sci, Dept Pharm, Med Ctr, Nijmegen, Netherlands
[2] Insight Rx, San Francisco, CA USA
[3] Ziekenhuisgrp Twente, Dept Clin Pharm, Almelo, Netherlands
[4] Isala Hosp, Dept Pharm, Zwolle, Netherlands
[5] Rijnstate Hosp, Dept Clin Pharm, Arnhem, Netherlands
[6] Jeroen Bosch Hosp, Dept Pharm, Shertogenbosch, Netherlands
[7] Radboud Univ Nijmegen, Dept Pharm, Med Ctr, Nijmegen, Netherlands
[8] Jeroen Bosch Hosp, Dept Intens Care Med, Shertogenbosch, Netherlands
[9] Radboud Univ Nijmegen, Dept Intens Care Med, Med Ctr, Nijmegen, Netherlands
关键词
critically ill; model-informed precision dosing; validation; vancomycin; CONTINUOUS-INFUSION; POPULATION; PHARMACOKINETICS; GUIDELINES;
D O I
10.1111/bcp.14360
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Aims Vancomycin is an important antibiotic for critically ill patients with Gram-positive bacterial infections. Critically ill patients typically have severely altered pathophysiology, which leads to inefficacy or toxicity. Model-informed precision dosing may aid in optimizing the dose, but prospectively validated tools are not available for this drug in these patients. We aimed to prospectively validate a population pharmacokinetic model for purpose model-informed precision dosing of vancomycin in critically ill patients. Methods We first performed a systematic evaluation of various models on retrospectively collected pharmacokinetic data in critically ill patients and then selected the best performing model. This model was implemented in the Insight Rx clinical decision support tool and prospectively validated in a multicentre study in critically ill patients. The predictive performance was obtained as mean prediction error and relative root mean squared error. Results We identified 5 suitable population pharmacokinetic models. The most suitable model was carried forward to a prospective validation. We found in a prospective multicentre study that the selected model could accurately and precisely predict the vancomycin pharmacokinetics based on a previous measurement, with a mean prediction error and relative root mean squared error of respectively 8.84% (95% confidence interval 5.72-11.96%) and 19.8% (95% confidence interval 17.47-22.13%). Conclusion Using a systematic approach, with a retrospective evaluation and prospective verification we showed the suitability of a model to predict vancomycin pharmacokinetics for purposes of model-informed precision dosing in clinical practice. The presented methodology may serve a generic approach for evaluation of pharmacometric models for the use of model-informed precision dosing in the clinic.
引用
收藏
页码:2497 / 2506
页数:10
相关论文
共 50 条
[31]   From Therapeutic Drug Monitoring to Model-Informed Precision Dosing for Antibiotic [J].
Wicha, Sebastian G. ;
Martson, Anne-Grete ;
Nielsen, Elisabet I. ;
Koch, Birgit C. P. ;
Friberg, Lena E. ;
Alffenaar, Jan-Willem ;
Minichmayr, Iris K. .
CLINICAL PHARMACOLOGY & THERAPEUTICS, 2021, 109 (04) :928-941
[32]   Suggestions for Model-Informed Precision Dosing to Optimize Neonatal Drug Therapy [J].
Euteneuer, Joshua C. ;
Kamatkar, Suyog ;
Fukuda, Tsuyoshi ;
Vinks, Alexander A. ;
Akinbi, Henry T. .
JOURNAL OF CLINICAL PHARMACOLOGY, 2019, 59 (02) :168-176
[33]   Personalized Antifungal Therapy Through Model-Informed Precision Dosing of Posaconazole [J].
Jansen, Anouk M. E. ;
Snijdelaar, Kim ;
Keizer, Ron J. ;
Spriet, Isabel ;
Dreesen, Erwin ;
Brueggemann, Roger J. M. ;
ter Heine, Rob .
CLINICAL PHARMACOKINETICS, 2024, 63 (05) :645-656
[34]   Rationale, Development, and Validation of HdxSim, a Clinical Decision Support Tool for Model-Informed Precision Dosing of Hydroxyurea for Children with Sickle Cell Anemia [J].
Power-Hays, Alexandra ;
Dong, Min ;
Punt, Nieko ;
Mizuno, Tomoyuki ;
Smart, Luke R. ;
Vinks, Alexander A. ;
Ware, Russell E. .
CLINICAL PHARMACOLOGY & THERAPEUTICS, 2024, 116 (03) :670-677
[35]   Model-Informed Precision Dosing for Personalized Ustekinumab Treatment in Plaque Psoriasis [J].
Rodriguez-Fernandez, Karine ;
Zarzoso-Foj, Javier ;
Saez-Bello, Marina ;
Mateu-Puchades, Almudena ;
Martorell-Calatayud, Antonio ;
Merino-Sanjuan, Matilde ;
Gras-Colomer, Elena ;
Climente-Marti, Monica ;
Mangas-Sanjuan, Victor .
PHARMACEUTICS, 2024, 16 (10)
[36]   Model-informed precision dosing to optimise immunosuppressive therapy in renal transplantation [J].
Zwart, Tom C. ;
Guchelaar, Henk-Jan ;
van der Boog, Paul J. M. ;
Swen, Jesse J. ;
van Gelder, Teun ;
de Fijter, Johan W. ;
Moes, Dirk Jan A. R. .
DRUG DISCOVERY TODAY, 2021, 26 (11) :2527-2546
[37]   Software Tools for Model-Informed Precision Dosing: How Well Do They Satisfy the Needs? [J].
Kantasiripitak, Wannee ;
Van Daele, Ruth ;
Gijsen, Matthias ;
Ferrante, Marc ;
Spriet, Isabel ;
Dreesen, Erwin .
FRONTIERS IN PHARMACOLOGY, 2020, 11
[38]   Meropenem Model-Informed Precision Dosing in the Treatment of Critically Ill Patients: Can We Use It? [J].
Li, Letao ;
Sassen, Sebastiaan D. T. ;
Ewoldt, Tim M. J. ;
Abdulla, Alan ;
Hunfeld, Nicole G. M. ;
Muller, Anouk E. ;
de Winter, Brenda C. M. ;
Endeman, Henrik ;
Koch, Birgit C. P. .
ANTIBIOTICS-BASEL, 2023, 12 (02)
[39]   Model-informed precision dosing of quetiapine in bipolar affective disorder patients: initial dose recommendation [J].
Zheng, Zi-Qiang ;
Jin, Ying-Wei ;
Yin, Di ;
Chen, Xiao ;
He, Su-Mei ;
Liu, Chen-Xu ;
Zhang, Cun ;
Wang, Dong-Dong .
FRONTIERS IN PSYCHIATRY, 2024, 15
[40]   Towards Model-informed Precision Dosing with Expert-in-the-loop Machine Learning [J].
Kan, Yihuang ;
Chiu, Yi-Wen ;
Lin, Ming-Yen ;
Su, Fang-yi ;
Huang, Sheng-Tai .
2021 IEEE 22ND INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION FOR DATA SCIENCE (IRI 2021), 2021, :342-347