Prospective validation of a model-informed precision dosing tool for vancomycin in intensive care patients

被引:29
作者
ter Heine, Rob [1 ]
Keizer, Ron J. [2 ]
van Steeg, Krista [3 ]
Smolders, Elise J. [1 ,4 ]
van Luin, Matthijs [5 ]
Derijks, Hieronymus J. [6 ,7 ]
de Jager, Cornelis P. C. [8 ]
Frenzel, Tim [9 ]
Bruggemann, Roger [1 ]
机构
[1] Radboud Univ Nijmegen, Radboud Inst Hlth Sci, Dept Pharm, Med Ctr, Nijmegen, Netherlands
[2] Insight Rx, San Francisco, CA USA
[3] Ziekenhuisgrp Twente, Dept Clin Pharm, Almelo, Netherlands
[4] Isala Hosp, Dept Pharm, Zwolle, Netherlands
[5] Rijnstate Hosp, Dept Clin Pharm, Arnhem, Netherlands
[6] Jeroen Bosch Hosp, Dept Pharm, Shertogenbosch, Netherlands
[7] Radboud Univ Nijmegen, Dept Pharm, Med Ctr, Nijmegen, Netherlands
[8] Jeroen Bosch Hosp, Dept Intens Care Med, Shertogenbosch, Netherlands
[9] Radboud Univ Nijmegen, Dept Intens Care Med, Med Ctr, Nijmegen, Netherlands
关键词
critically ill; model-informed precision dosing; validation; vancomycin; CONTINUOUS-INFUSION; POPULATION; PHARMACOKINETICS; GUIDELINES;
D O I
10.1111/bcp.14360
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Aims Vancomycin is an important antibiotic for critically ill patients with Gram-positive bacterial infections. Critically ill patients typically have severely altered pathophysiology, which leads to inefficacy or toxicity. Model-informed precision dosing may aid in optimizing the dose, but prospectively validated tools are not available for this drug in these patients. We aimed to prospectively validate a population pharmacokinetic model for purpose model-informed precision dosing of vancomycin in critically ill patients. Methods We first performed a systematic evaluation of various models on retrospectively collected pharmacokinetic data in critically ill patients and then selected the best performing model. This model was implemented in the Insight Rx clinical decision support tool and prospectively validated in a multicentre study in critically ill patients. The predictive performance was obtained as mean prediction error and relative root mean squared error. Results We identified 5 suitable population pharmacokinetic models. The most suitable model was carried forward to a prospective validation. We found in a prospective multicentre study that the selected model could accurately and precisely predict the vancomycin pharmacokinetics based on a previous measurement, with a mean prediction error and relative root mean squared error of respectively 8.84% (95% confidence interval 5.72-11.96%) and 19.8% (95% confidence interval 17.47-22.13%). Conclusion Using a systematic approach, with a retrospective evaluation and prospective verification we showed the suitability of a model to predict vancomycin pharmacokinetics for purposes of model-informed precision dosing in clinical practice. The presented methodology may serve a generic approach for evaluation of pharmacometric models for the use of model-informed precision dosing in the clinic.
引用
收藏
页码:2497 / 2506
页数:10
相关论文
共 50 条
  • [21] Model-informed precision dosing: State of the art and future perspectives
    Minichmayr, I. K.
    Dreesen, E.
    Centanni, M.
    Wang, Z.
    Hoffert, Y.
    Friberg, L. E.
    Wicha, S. G.
    ADVANCED DRUG DELIVERY REVIEWS, 2024, 215
  • [22] Selecting the Best Pharmacokinetic Models for a Priori Model-Informed Precision Dosing with Model Ensembling
    Agema, Bram C.
    Kocher, Tolra
    Ozturk, Aysenur B.
    Giraud, Eline L.
    van Erp, Nielka P.
    de Winter, Brenda C. M.
    Mathijssen, Ron H. J.
    Koolen, Stijn L. W.
    Koch, Birgit C. P.
    Sassen, Sebastiaan D. T.
    CLINICAL PHARMACOKINETICS, 2024, 63 (10) : 1449 - 1461
  • [23] Pharmacokinetic equations versus Bayesian guided vancomycin monitoring: Pharmacokinetic model and model-informed precision dosing trial simulations
    Aljutayli, Abdullah
    Thirion, Daniel J. G.
    Bonnefois, Guillaume
    Nekka, Fahima
    CTS-CLINICAL AND TRANSLATIONAL SCIENCE, 2022, 15 (04): : 942 - 953
  • [24] Predictive performance of multi-model approaches for model-informed precision dosing of piperacillin in critically ill patients
    Schatz, Lea Marie
    Greppmair, Sebastian
    Kunzelmann, Alexandra K.
    Starp, Johannes
    Brinkmann, Alexander
    Roehr, Anka
    Frey, Otto
    Hagel, Stefan
    Dorn, Christoph
    Zoller, Michael
    Scharf, Christina
    Wicha, Sebastian G.
    Liebchen, Uwe
    INTERNATIONAL JOURNAL OF ANTIMICROBIAL AGENTS, 2024, 64 (04)
  • [25] Individualized Patient Care Through Model-Informed Precision Dosing: Reflections on Training Future Practitioners
    Jelliffe, Roger
    Liu, Jiang
    Drusano, George L.
    Martinez, Marilyn N.
    AAPS JOURNAL, 2022, 24 (06)
  • [26] Model-Informed Precision Dosing: Background, Requirements, Validation, Implementation, and Forward Trajectory of Individualizing Drug Therapy
    Darwich, Adam S.
    Polasek, Thomas M.
    Aronson, Jeffrey K.
    Ogungbenro, Kayode
    Wright, Daniel F. B.
    Achour, Brahim
    Reny, Jean-Luc
    Daali, Youssef
    Eiermann, Birgit
    Cook, Jack
    Lesko, Lawrence
    McLachlan, Andrew J.
    Rostami-Hodjegan, Amin
    ANNUAL REVIEW OF PHARMACOLOGY AND TOXICOLOGY, VOL 61, 2021, 2021, 61 : 225 - 245
  • [27] Model-Informed Precision Dosing of Isoniazid: Parametric Population Pharmacokinetics Model Repository
    Ju, Gehang
    Liu, Xin
    Yang, Wenyu
    Xu, Nuo
    Chen, Lulu
    Zhang, Chenchen
    He, Qingfeng
    Zhu, Xiao
    Ouyang, Dongsheng
    DRUG DESIGN DEVELOPMENT AND THERAPY, 2024, 18 : 801 - 818
  • [28] From Therapeutic Drug Monitoring to Model-Informed Precision Dosing for Antibiotic
    Wicha, Sebastian G.
    Martson, Anne-Grete
    Nielsen, Elisabet I.
    Koch, Birgit C. P.
    Friberg, Lena E.
    Alffenaar, Jan-Willem
    Minichmayr, Iris K.
    CLINICAL PHARMACOLOGY & THERAPEUTICS, 2021, 109 (04) : 928 - 941
  • [29] Suggestions for Model-Informed Precision Dosing to Optimize Neonatal Drug Therapy
    Euteneuer, Joshua C.
    Kamatkar, Suyog
    Fukuda, Tsuyoshi
    Vinks, Alexander A.
    Akinbi, Henry T.
    JOURNAL OF CLINICAL PHARMACOLOGY, 2019, 59 (02) : 168 - 176
  • [30] Rationale, Development, and Validation of HdxSim, a Clinical Decision Support Tool for Model-Informed Precision Dosing of Hydroxyurea for Children with Sickle Cell Anemia
    Power-Hays, Alexandra
    Dong, Min
    Punt, Nieko
    Mizuno, Tomoyuki
    Smart, Luke R.
    Vinks, Alexander A.
    Ware, Russell E.
    CLINICAL PHARMACOLOGY & THERAPEUTICS, 2024, 116 (03) : 670 - 677