Electrical Stability of High-Mobility Microcrystalline Silicon Thin-Film Transistors

被引:5
作者
Risteska, Anita [1 ]
Chan, Kah-Yoong [2 ]
Gordijn, Aad [2 ]
Stiebig, Helmut [2 ]
Knipp, Dietmar [1 ]
机构
[1] Jacobs Univ Bremen, Elect Devices & Nanophoton Lab, Ctr Adv Syst Engn, D-28759 Bremen, Germany
[2] Res Ctr Julich, Photovolta IEF5, D-52425 Julich, Germany
来源
JOURNAL OF DISPLAY TECHNOLOGY | 2012年 / 8卷 / 01期
关键词
Electrical stability; microcrystalline silicon; thin-film transistors (TFTs); threshold voltage; CHEMICAL-VAPOR-DEPOSITION; TFTS; NITRIDE; DEVICES;
D O I
10.1109/JDT.2011.2166055
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The electrical stability of high-mobility microcrystalline silicon (c-Si: H) thin-film transistors (TFTs) was investigated and compared to amorphous silicon (a-Si: H) TFTs. Under prolonged bias stress the microcrystalline silicon TFTs exhibit an improved electrical stability compared to amorphous silicon TFTs. The microcrystalline silicon TFTs were prepared by plasma-enhanced chemical vapor deposition at temperatures compatible with flexible substrates. The realized microcrystalline silicon transistors exhibit electron charge carrier mobilities exceeding 30 cm(2)/V s. Prolonged operation of the transistors leads to a shift of the threshold voltage towards positive and negative gate voltages depending on the gate biasing conditions (positive or negative gate voltage). The shift of the threshold voltage increases with increasing positive and negative gate bias stress. The behavior is fundamentally different from the behavior of the amorphous silicon TFTs, which exhibit only a shift of the threshold voltage towards positive gate voltages irrespective of the polarity of the gate bias stress. The threshold voltage shift of the microcrystalline silicon TFTs saturates after a few minutes to a few hours, depending on the gate voltage. After prolonged bias stress, a recovery of the initial threshold voltage is observed without any thermal annealing or biasing of the transistors, which is not the case for the measured amorphous silicon TFTs.
引用
收藏
页码:27 / 34
页数:8
相关论文
共 35 条
  • [1] Electrical stability of pentacene thin film transistors
    Benor, Amare
    Hoppe, Arne
    Wagner, Veit
    Knipp, Dietmar
    [J]. ORGANIC ELECTRONICS, 2007, 8 (06) : 749 - 758
  • [2] POLYCRYSTALLINE SILICON THIN-FILM TRANSISTORS
    BROTHERTON, SD
    [J]. SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 1995, 10 (06) : 721 - 738
  • [3] POLYCRYSTALLINE SILICON THIN-FILM DEVICES FOR LARGE AREA ELECTRONICS
    BROTHERTON, SD
    [J]. MICROELECTRONIC ENGINEERING, 1991, 15 (1-4) : 333 - 340
  • [4] Stable microcrystalline silicon thin-film transistors produced by the layer-by-layer technique
    Cabarrocas, PRI
    Brenot, R
    Bulkin, P
    Vanderhaghen, R
    Drévillon, B
    French, I
    [J]. JOURNAL OF APPLIED PHYSICS, 1999, 86 (12) : 7079 - 7082
  • [5] Microcrystalline-Silicon Transistors and CMOS Inverters Fabricated Near the Transition to Amorphous-Growth Regime
    Chan, Kah-Yoong
    Gordijn, Aad
    Stiebig, Helmut
    Knipp, Dietmar
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2009, 56 (09) : 1924 - 1929
  • [6] High-mobility microcrystalline silicon thin-film transistors prepared near the transition to amorphous growth
    Chan, Kah-Yoong
    Knipp, Dietmar
    Gordijn, Aad
    Stiebig, Helmut
    [J]. JOURNAL OF APPLIED PHYSICS, 2008, 104 (05)
  • [7] Evolution of nanocrystalline silicon thin film transistor channel layers
    Cheng, IC
    Allen, S
    Wagner, S
    [J]. JOURNAL OF NON-CRYSTALLINE SOLIDS, 2004, 338 : 720 - 724
  • [8] Hole and electron field-effect mobilities in nanocrystalline silicon deposited at 150°C
    Cheng, IC
    Wagner, S
    [J]. APPLIED PHYSICS LETTERS, 2002, 80 (03) : 440 - 442
  • [9] Stability of microcrystalline silicon for thin film solar cell applications
    Finger, F
    Carius, R
    Dylla, T
    Klein, S
    Okur, S
    Günes, M
    [J]. IEE PROCEEDINGS-CIRCUITS DEVICES AND SYSTEMS, 2003, 150 (04): : 300 - 308
  • [10] High rate deposition of microcrystalline silicon using conventional plasma-enhanced chemical vapor deposition
    Guo, LH
    Kondo, M
    Fukawa, M
    Saitoh, K
    Matsuda, A
    [J]. JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS, 1998, 37 (10A): : L1116 - L1118