Dispersion relation of graphene surface plasmon by using a quantum hydrodynamic model

被引:7
作者
Zhu, Shunshun [1 ]
Wang, Baojun [1 ]
Guo, Bin [1 ]
机构
[1] Wuhan Univ Technol, Dept Phys, Wuhan 430070, Peoples R China
关键词
Surface plasmon; Graphene; Quantum hydrodynamic model; Dispersion relations; WAVES;
D O I
10.1016/j.spmi.2020.106516
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
A quantum hydrodynamic model is used to study the properties of surface plasmon at an interface between a monolayer graphene sheet and a Voigt substrate. The substrate is assumed as a semiconductor that applying an external magnetic field to the structure in the Voigt configuration. The dispersion relations of graphene surface plasmon are obtained analytically by solving Maxwell's equations and the quantum hydrodynamic equations. It is found that the quantum effects significantly change the properties of graphene surface plasmon and the features of such plasmon are quite different from those in a classical hydrodynamic model. The results also show that the applied magnetic field and the graphene character greatly affect the graphene surface plasmon. Moreover, The plasmon modes exhibit distinctively different behavior for forward and backward propagating directions, which are in contrast to the cases without the quantum effects. In addition, a one-way plasmon mode is found in the lower band region. Parameter dependence of the effects is examined and discussed.
引用
收藏
页数:7
相关论文
共 46 条
  • [1] Tunable surface plasmon polaritons in a Weyl semimetal waveguide
    Abdol, S. Oskoui
    Vala, A. Soltani
    Abdollahipour, B.
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2019, 31 (33)
  • [2] Surface magnetoplasmons in a slit waveguide with graphene monolayers
    Aminabad, Zahra Abedini
    Barvestani, Jamal
    Vala, Ali Soltani
    [J]. SUPERLATTICES AND MICROSTRUCTURES, 2019, 130 : 221 - 231
  • [3] Bao QL, 2011, NAT PHOTONICS, V5, P411, DOI [10.1038/nphoton.2011.102, 10.1038/NPHOTON.2011.102]
  • [4] Tunable Graphene Metasurface Reflectarray for Cloaking, Illusion, and Focusing
    Biswas, Sudipta Romen
    Gutierrez, Cristian E.
    Nemilentsau, Andrei
    Lee, In-Ho
    Oh, Sang-Hyun
    Avouris, Phaedon
    Low, Tony
    [J]. PHYSICAL REVIEW APPLIED, 2018, 9 (03):
  • [5] Surface plasmon polariton amplification in semiconductor-graphene-dielectric structure
    Dadoenkova, Yuliya S.
    Moiseev, Sergey G.
    Abramov, Aleksei S.
    Kadochkin, Aleksei S.
    Fotiadi, Andrei A.
    Zolotovskii, Igor O.
    [J]. ANNALEN DER PHYSIK, 2017, 529 (05)
  • [6] Semiclassical fluid model of nonlinear plasmons in doped graphene
    Eliasson, Bengt
    Liu, Chuan Sheng
    [J]. PHYSICS OF PLASMAS, 2018, 25 (01)
  • [7] Design of tunable biperiodic graphene metasurfaces
    Fallahi, Arya
    Perruisseau-Carrier, Julien
    [J]. PHYSICAL REVIEW B, 2012, 86 (19)
  • [8] Graphene-Antenna Sandwich Photodetector
    Fang, Zheyu
    Liu, Zheng
    Wang, Yumin
    Ajayan, Pulickel M.
    Nordlander, Peter
    Halas, Naomi J.
    [J]. NANO LETTERS, 2012, 12 (07) : 3808 - 3813
  • [9] Van der Waals heterostructures
    Geim, A. K.
    Grigorieva, I. V.
    [J]. NATURE, 2013, 499 (7459) : 419 - 425
  • [10] Plasmonics beyond the diffraction limit
    Gramotnev, Dmitri K.
    Bozhevolnyi, Sergey I.
    [J]. NATURE PHOTONICS, 2010, 4 (02) : 83 - 91