Acoustical source separation and identification using principal component analysis and correlation analysis

被引:0
|
作者
Cheng, Wei [1 ]
Zhang, Zhousuo [1 ]
Zhang, Jie [1 ]
机构
[1] Xi An Jiao Tong Univ, State Key Lab Mfg Syst Engn, Xian 710049, Peoples R China
基金
中国博士后科学基金;
关键词
acoustical source separation; principal component analysis; correlation analysis; condition monitoring and fault diagnosis; shell structure; LINE MATRIX-METHOD; TRANSMISSION LOSS; BLIND SEPARATION; MODEL;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Acoustical signals from mechanical systems reveal the operational status of mechanical components, which can be used for machinery condition monitoring and fault diagnosis. However, it is very difficult to extract or identify the acoustical source features as the measured acoustical signals are mixed signals of all the sources. Therefore, this paper studies on the source separation and identification of acoustical signals using principal component analysis and correlation analysis. The effectiveness of the presented method is validated through a numerical case study and an experimental study on a test bed with shell structures. This study can provide pure acoustical source information of mechanical systems, and benefit for machinery condition monitoring and fault diagnosis.
引用
收藏
页码:1817 / 1827
页数:11
相关论文
共 50 条
  • [1] Acoustical Source Tracing Using Independent Component Analysis and Correlation Analysis
    Cheng, Wei
    Zhang, Zhousuo
    Zhang, Jie
    Lu, Jiantao
    SHOCK AND VIBRATION, 2015, 2015
  • [2] Nonlinear factor analysis and its application to acoustical source separation and identification
    Cheng, Wei
    Gao, Lin
    Zhang, Jie
    Lu, Jiantao
    JOURNAL OF VIBROENGINEERING, 2016, 18 (05) : 3397 - 3411
  • [3] Identification of key genes in osteoarthritis using bioinformatics, principal component analysis and meta-analysis
    Sun, Xiangxiang
    Duan, Honghao
    Xiao, Lin
    Yao, Shuxin
    He, Qiang
    Chen, Xinlin
    Zhang, Weijie
    Ma, Jianbing
    EXPERIMENTAL AND THERAPEUTIC MEDICINE, 2021, 21 (01)
  • [4] Voltammetric identification of antiarrhythmic medicines using principal component analysis
    Sidel'nikov, A. V.
    Zil'berg, R. A.
    Yarkaeva, Yu. A.
    Maistrenko, V. N.
    Kraikin, V. A.
    JOURNAL OF ANALYTICAL CHEMISTRY, 2015, 70 (10) : 1261 - 1266
  • [5] Voltammetric identification of antiarrhythmic medicines using principal component analysis
    A. V. Sidel’nikov
    R. A. Zil’berg
    Yu. A. Yarkaeva
    V. N. Maistrenko
    V. A. Kraikin
    Journal of Analytical Chemistry, 2015, 70 : 1261 - 1266
  • [6] Blind source separation using principal component neural networks
    Diamantaras, KI
    ARTIFICIAL NEURAL NETWORKS-ICANN 2001, PROCEEDINGS, 2001, 2130 : 515 - 520
  • [7] Analysis of an European union election using principal component analysis
    Rodrigues, Paulo C.
    Lima, Ana T.
    STATISTICAL PAPERS, 2009, 50 (04) : 895 - 904
  • [8] Determination of component concentrations in models of exhaled air samples using principal component analysis and canonical correlation analysis
    Kistenev, Yu. V.
    Borisov, A. V.
    Shapovalov, A. V.
    INTERNATIONAL CONFERENCE ON ATOMIC AND MOLECULAR PULSED LASERS XII, 2015, 9810
  • [9] Exploration of Principal Component Analysis: Deriving Principal Component Analysis Visually Using Spectra
    Beattie, J. Renwick
    Esmonde-White, Francis W. L.
    APPLIED SPECTROSCOPY, 2021, 75 (04) : 361 - 375
  • [10] A semiparametric approach to source separation using independent component analysis
    Eloyan, Ani
    Ghosh, Sujit K.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2013, 58 : 383 - 396