Numerical analytic continuation of Euclidean data

被引:59
作者
Tripolt, Ralf-Arno [1 ,2 ]
Gubler, Philipp [3 ,4 ,5 ]
Ulybyshev, Maksim [6 ,8 ]
von Smekal, Lorenz [7 ]
机构
[1] European Ctr Theoret Studies Nucl Phys & Related, I-38123 Villazzano, TN, Italy
[2] Fdn Bruno Kessler, I-38123 Villazzano, TN, Italy
[3] Japan Atom Energy Agcy, Adv Sci Res Ctr, Tokai, Ibaraki 3191195, Japan
[4] Keio Univ, Dept Phys, Kanagawa 2238522, Japan
[5] Keio Univ, Res & Educ Ctr Nat Sci, Kanagawa 2238521, Japan
[6] Univ Regensburg, Inst Theoret Phys, D-93053 Regensburg, Germany
[7] Justus Liebig Univ, Inst Theoret Phys, D-35392 Giessen, Germany
[8] Univ Wurzburg, D-97074 Wurzburg, Germany
关键词
Analytic continuation; Spectral function; Lattice QCD; MAXIMUM-ENTROPY ANALYSIS; SPECTRAL FUNCTIONS; INFORMATION-THEORY; FIELD-THEORY; QCD; TIME;
D O I
10.1016/j.cpc.2018.11.012
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this work we present a direct comparison of three different numerical analytic continuation methods: the Maximum Entropy Method, the Backus-Gilbert method and the Schlessinger point or Resonances Via Rade method. First, we perform a benchmark test based on a model spectral function and study the regime of applicability of these methods depending on the number of input points and their statistical error. We then apply these methods to more realistic examples, namely to numerical data on Euclidean propagators obtained from a Functional Renormalization Group calculation, to data from a lattice Quantum Chromodynamics simulation and to data obtained from a tight-binding model for graphene in order to extract the electrical conductivity. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:129 / 142
页数:14
相关论文
共 49 条
[1]   Spectral functions at small energies and the electrical conductivity in hot quenched lattice QCD [J].
Aarts, Gert ;
Allton, Chris ;
Foley, Justin ;
Hands, Simon ;
Kim, Seyong .
PHYSICAL REVIEW LETTERS, 2007, 99 (02)
[2]   The infrared behaviour of QCD Green's functions - Confinement, dynamical symmetry breaking, and hadrons as relativistic bound states [J].
Alkofer, R ;
von Smekal, L .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2001, 353 (5-6) :281-465
[3]  
[Anonymous], 2002, Numerical Recipes in C++: The Art of Scientific Computing
[4]   Maximum entropy analysis of the spectral functions in lattice QCD [J].
Asakawa, M ;
Nakahara, Y ;
Hatsuda, T .
PROGRESS IN PARTICLE AND NUCLEAR PHYSICS, VOL 46, NO 2, 2001, 46 (02) :459-508
[5]   Analysis of spectral functions in lattice QCD with the maximum entropy method [J].
Asakawa, M ;
Nakahara, Y ;
Hatsuda, T .
NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2000, 86 :191-195
[6]  
Backus F. G., 1970, PHIL T R SOC A, V266, P123, DOI [10.1098/rsta.1970.0005, DOI 10.1098/RSTA.1970.0005]
[7]   RESOLVING POWER OF GROSS EARTH DATA [J].
BACKUS, G ;
GILBERT, F .
GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1968, 16 (02) :169-&
[8]   DETERMINATION OF THERMODYNAMIC GREENS FUNCTIONS [J].
BAYM, G ;
MERMIN, ND .
JOURNAL OF MATHEMATICAL PHYSICS, 1961, 2 (02) :232-&
[9]   Non-perturbative renormalization flow in quantum field theory and statistical physics [J].
Berges, J ;
Tetradis, N ;
Wetterich, C .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 363 (4-6) :223-386
[10]   Many-body effects on graphene conductivity: Quantum Monte Carlo calculations [J].
Boyda, D. L. ;
Braguta, V. V. ;
Katsnelson, M. I. ;
Ulybyshev, M. V. .
PHYSICAL REVIEW B, 2016, 94 (08)