Operator-valued Semicircular Elements: Solving A Quadratic Matrix Equation with Positivity Constraints

被引:55
作者
Helton, J. William [2 ]
Far, Reza Rashidi [1 ]
Speicher, Roland [1 ]
机构
[1] Queens Univ, Dept Math & Stat, Kingston, ON K7L 3N6, Canada
[2] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1093/imrn/rnm086
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the quadratic matrix equation VW + eta(W) W = I, for given V with positive real part and given analytic mapping. with some positivity preserving properties, has exactly one solution W with positive real part. Also we provide and compare numerical algorithms based on the iteration underlying our proofs. This work bears on operator-valued free probability theory, in particular on the determination of the asymptotic eigenvalue distribution of band or block random matrices.
引用
收藏
页数:15
相关论文
共 12 条
[1]  
[Anonymous], 2006, LECT COMBINATORICS F, DOI DOI 10.1017/CBO9780511735127
[2]  
EARLE C.J., 1970, P S PURE MATH, V16, P61
[3]  
FAR RR, 2006, ARCHIVCSIT0610045
[4]   A new application of random matrices:: Ext(C*red(F2)) is not a group [J].
Haagerup, U ;
Thorbjornsen, S .
ANNALS OF MATHEMATICS, 2005, 162 (02) :711-775
[5]  
Harris L.A., 2003, ABSTR APPL ANAL, P261
[6]   Extremal problems of interpolation theory [J].
Helton, JW ;
Sakhnovich, LA .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2005, 35 (03) :819-841
[7]  
KRANTZ SG, MATHARXIV0608772
[8]   ON THE SPECTRUM OF RANDOM MATRICES [J].
Pastur, L. A. .
THEORETICAL AND MATHEMATICAL PHYSICS, 1972, 10 (01) :67-74
[9]   On the nonlinear matrix equation X+A* f (X)A=Q:: solutions and perturbation theory [J].
Ran, ACM ;
Reurings, MCB .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2002, 346 (1-3) :15-26
[10]  
Shlyakhtenko D., 1996, INT MATH RES NOTICES, V1996, P1013, DOI 10.1155/S1073792896000633