IMPORT VECTOR MACHINES BASED CLASSIFICATION OF MULTISENSOR REMOTE SENSING DATA

被引:0
|
作者
Waske, Bjoern [1 ]
Roscher, Ribana [1 ]
Klemenjak, Sascha [2 ]
机构
[1] Univ Bonn, Inst Geodesy & Geoinformat, Bonn, Germany
[2] Univ Bonn, ZFL Ctr Remote Sensing Land Surfaces, Bonn, Germany
关键词
Import Vector Machines; Support Vector Machines; land cover classification; SAR; multispectral; LOGISTIC-REGRESSION;
D O I
10.1109/IGARSS.2011.6049829
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The classification of multisensor data sets, consisting of multitemporal SAR data and multispectral is addressed. In the present study, Import Vector Machines (IVM) are applied on two data sets, consisting of (i) Envisat ASAR/ERS-2 SAR data and a Landsat 5 TM scene, and (ii) TerraSAR-X data and a RapidEye scene. The performance of IVM for classifying multisensor data is evaluated and the method is compared to Support Vector Machines (SVM) in terms of accuracy and complexity. In general, the experimental results demonstrate that the classification accuracy is improved by the multisensor data set. Moreover, IVM and SVM perform similar in terms of the classification accuracy. However, the number of import vectors is considerably less than the number of support vectors, and thus the computation time of the IVM classification is lower. IVM can directly be applied to the multi-class problems and provide probabilistic outputs. Overall IVM constitutes a feasible method and alternative to SVM.
引用
收藏
页码:2931 / 2934
页数:4
相关论文
共 50 条
  • [31] Classification of 'potential' forests based on remote sensing data
    Hycza, Tomasz
    Lisiewicz, Maciej
    Waraksa, Patryk
    Sterenczak, Krzysztof
    SYLWAN, 2022, 166 (03): : 194 - 210
  • [32] Support Vector Machines in Remote Sensing: The Tricks of the Trade
    Camps-Valls, Gustavo
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XVII, 2011, 8180
  • [33] Land cover classification based on remote sensing data
    He, Ying-Ming
    Wang, Han-Jie
    Zhang, Hong-Feng
    Jiefangjun Ligong Daxue Xuebao/Journal of PLA University of Science and Technology (Natural Science Edition), 2011, 12 (03): : 294 - 300
  • [34] CONTEXTUAL REMOTE-SENSING IMAGE CLASSIFICATION BY SUPPORT VECTOR MACHINES AND MARKOV RANDOM FIELDS
    Moser, Gabriele
    Serpico, Sebastiano B.
    2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, : 3728 - 3731
  • [35] Estimating biophysical parameters of rice with remote sensing data using support vector machines
    Yang XiaoHua
    Huang JingFeng
    Wu YaoPing
    Wang JianWen
    Wang Pei
    Wang XiaoMing
    Huete, Alfredo R.
    SCIENCE CHINA-LIFE SCIENCES, 2011, 54 (03) : 272 - 281
  • [36] Mapping of impervious surfaces with the use of remote sensing imagery: Support Vector Machines classification and GIS-based approach
    Sobieraj, Janusz
    Marin, Marcos Fernandez
    Metelski, Dominik
    ARCHIVES OF CIVIL ENGINEERING, 2023, 69 (03) : 129 - 146
  • [37] Unmixing of remote sensing images based on support vector machines and pairwise coupling
    Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
    不详
    Cehui Xuebao, 2009, 4 (318-323):
  • [38] Estimating biophysical parameters of rice with remote sensing data using support vector machines
    Alfredo R.HUETE
    Science China(Life Sciences), 2011, (03) : 272 - 281
  • [39] Estimating biophysical parameters of rice with remote sensing data using support vector machines
    XiaoHua Yang
    JingFeng Huang
    YaoPing Wu
    JianWen Wang
    Pei Wang
    XiaoMing Wang
    Alfredo R. Huete
    Science China Life Sciences, 2011, 54 : 272 - 281
  • [40] Estimating biophysical parameters of rice with remote sensing data using support vector machines
    Alfredo R.HUETE
    Science China(Life Sciences), 2011, 54 (03) : 272 - 281