Two-Weight Codes and Second Order Recurrences

被引:3
作者
Shi, Minjia [1 ]
Zhang, Zhongyi [2 ]
Sole, Patrick [3 ]
机构
[1] Anhui Univ, Key Lab Intelligent Comp & Signal Proc, Minist Educ, Sch Math Sci, Hefei 230601, Peoples R China
[2] Anhui Univ, Sch Wendian, Hefei 230601, Peoples R China
[3] Aix Marseille Univ, Cent Marseile, CNRS, I2M, Marseille, France
基金
中国国家自然科学基金;
关键词
cyclic codes; polynomials; nonzero weight distribution; second order recurrences; two-weight codes; maximum distance separable code; Two-weight codes; Irreducible Cyclic codes; MDS codes; Linear recurrences;
D O I
10.1049/cje.2019.07.001
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Cyclic codes of dimension 2 over a finite field are shown to have at most two nonzero weights. We compute their weight distribution, and give a condition on the roots of their check polynomials for them to be maximum distance separable code.
引用
收藏
页码:1127 / 1130
页数:4
相关论文
共 15 条
[1]  
[Anonymous], [No title captured]
[2]  
Brouwer AE, 2012, UNIVERSITEXT, P1, DOI 10.1007/978-1-4614-1939-6
[3]  
CALDERBANK R, 1982, J LOND MATH SOC, V26, P365
[4]  
Delsarte Ph., 1972, Discrete Mathematics, V3, P47, DOI 10.1016/0012-365X(72)90024-6
[5]  
Graham R., 1994, CONCRETE MATH
[6]  
Lucas E., 1878, Am. J. Math, V1, P289, DOI [DOI 10.2307/2369373, 10.2307/2369373]
[7]  
MacWilliams F. J., 1977, THEORY ERROR CORRECT, V68, P185
[8]   A Family of Two-Weight Irreducible Cyclic Codes [J].
Rao, Asha ;
Pinnawala, Nimalsiri .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (06) :2568-2570
[9]  
Renault M., 2013, Math. Mag., V86, P372
[10]  
Renault M., 1996, THESIS