Theory of locally concave functions and its applications to sharp estimates of integral functionals

被引:18
作者
Stolyarov, D. M. [1 ]
Zatitskiy, P. B. [1 ]
机构
[1] St Petersburg State Univ, Russian Acad Sci, St Petersburg Dept Steklov Math Inst, PL Chebyshev Res Lab, St Petersburg 199034, Russia
基金
俄罗斯科学基金会;
关键词
Bellman function; Integral functional; BMO; Muckenhoupt class; Monotonic rearrangement; BELLMAN FUNCTION; INEQUALITIES;
D O I
10.1016/j.aim.2015.11.048
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a duality theorem the computation of certain Bellman functions is usually based on. As a byproduct, we obtain sharp results about the norms of monotonic rearrangements. The main novelty of our approach is a special class of martingales and an extremal problem on this class, which is dual to the minimization problem for locally concave functions. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:228 / 273
页数:46
相关论文
共 40 条
[21]   Sharp Inequalities for BMO Functions [J].
Osekowski, Adam .
CHINESE ANNALS OF MATHEMATICS SERIES B, 2015, 36 (02) :225-236
[22]   SURVEY ARTICLE: BELLMAN FUNCTION METHOD AND SHARP INEQUALITIES FOR MARTINGALES [J].
Osekowski, Adam .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2013, 43 (06) :1759-1823
[23]   Sharp weak type estimates for weights in the class Ap1,p2 [J].
Reznikov, Alexander .
REVISTA MATEMATICA IBEROAMERICANA, 2013, 29 (02) :433-478
[24]  
Rockafellar T., 1972, Convex Analysis
[25]   SHARP RESULTS IN THE INTEGRAL-FORM JOHN-NIRENBERG INEQUALITY [J].
Slavin, L. ;
Vasyunin, V. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 363 (08) :4135-4169
[26]  
Slavin L., JOHN NIRENBERG UNPUB
[27]  
Slavin L., 2004, THESIS
[28]  
Slavin L., INEQUALITIES B UNPUB
[29]   Monge-Ampere equations and Bellman functions: The dyadic maximal operator [J].
Slavin, Leonid ;
Stokolos, Alexander ;
Vasyunin, Vasily .
COMPTES RENDUS MATHEMATIQUE, 2008, 346 (9-10) :585-588
[30]   Sharp Lp Estimates on BMO [J].
Slavin, Leonid ;
Vasyunin, Vasily .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2012, 61 (03) :1051-1110