Where groundwater seeps: Evaluating modeled groundwater discharge patterns with thermal infrared surveys at the river-network scale

被引:15
作者
Barclay, J. R. [1 ,3 ]
Briggs, M. A. [2 ]
Moore, E. M. [1 ]
Starn, J. J. [3 ]
Hanson, A. E. H. [2 ]
Helton, A. M. [1 ,4 ]
机构
[1] Univ Connecticut, Dept Nat Resources & Environm, 1376 Storrs Rd,Unit 4087, Storrs, CT 06269 USA
[2] US Geol Survey, Hydrogeophys Branch, Earth Syst Proc Div, 11 Sherman Pl,Unit 5015, Storrs, CT 06269 USA
[3] US Geol Survey, New England Water Sci Ctr, E Hartford, CT 06108 USA
[4] Univ Connecticut, Ctr Environm Sci & Engn, 3107 Horsebarn Hill Rd,Unit 4210, Storrs, CT 06269 USA
基金
美国食品与农业研究所; 美国国家科学基金会;
关键词
Groundwater discharge; Seepage; Thermal infrared; MODFLOW; model evaluation; FLOW; DYNAMICS; STREAMS; IMAGERY;
D O I
10.1016/j.advwatres.2021.104108
中图分类号
TV21 [水资源调查与水利规划];
学科分类号
081501 ;
摘要
Predicting baseflow dynamics, protecting aquatic habitat, and managing legacy contaminants requires explicit characterization and prediction of groundwater discharge patterns throughout river networks. Using handheld thermal infrared (TIR) cameras, we surveyed 47 km of stream length across the Farmington River watershed (1,570 km(2); CT and MA, USA), mapping locations of bank and waterline groundwater discharges based on their thermal signature. Using the observed groundwater discharge locations and predicted groundwater discharge rates from 6 variations of a numerical groundwater-flow model (MODFLOW-NWT), we compared 1) predicted groundwater-discharge rates in areas with and without observed groundwater discharge, 2) spatial patterns of observed and predicted groundwater discharge locations, and 3) density of observed groundwater discharge locations with predicted discharge rates. Five of six models reasonably predicted the spatial patterns of discharge locations along the 5th order mainstem, but fewer models predicted groundwater discharge patterns in smaller streams. Our results highlight 1) the feasibility of using TIR observations to evaluate groundwater models, 2) model parameters that influence discharge prediction accuracy (riverbed sediment and bedrock hydraulic conductivity and river-aquifer connections), and 3) current strengths and future opportunities for improved modeling of groundwater-discharge patterns.
引用
收藏
页数:14
相关论文
共 73 条
[1]   Fully integrated surface-subsurface flow modelling of groundwater-lake interaction in an esker aquifer: Model verification with stable isotopes and airborne thermal imaging [J].
Ala-aho, Pertti ;
Rossi, Pekka M. ;
Isokangas, Elina ;
Klove, Bjorn .
JOURNAL OF HYDROLOGY, 2015, 522 :391-406
[2]   A simple thermal mapping method for seasonal spatial patterns of groundwater-surface water interaction [J].
Anibas, Christian ;
Buis, Kerst ;
Verhoeven, Ronny ;
Meire, Patrick ;
Batelaan, Okke .
JOURNAL OF HYDROLOGY, 2011, 397 (1-2) :93-104
[3]   A Review of Airborne Electromagnetic Methods With Focus on Geotechnical and Hydrological Applications From 2007 to 2017 [J].
Auken, Esben ;
Boesen, Tue ;
Christiansen, Anders V. .
ADVANCES IN GEOPHYSICS, VOL 58, 2017, 58 :47-93
[4]   Improving the accuracy of time-lapse thermal infrared imaging for hydrologic applications [J].
Baker, Emily A. ;
Lautz, Laura K. ;
McKenzie, Jeffrey M. ;
Aubry-Wake, Caroline .
JOURNAL OF HYDROLOGY, 2019, 571 :60-70
[5]   Improved Prediction of Management-Relevant Groundwater Discharge Characteristics Throughout River Networks [J].
Barclay, J. R. ;
Starn, J. J. ;
Briggs, M. A. ;
Helton, A. M. .
WATER RESOURCES RESEARCH, 2020, 56 (10)
[6]  
Barclay J.R., **DATA OBJECT**, DOI 10.5066/P960RSKM
[7]  
Barclay J.R., 2019, **DATA OBJECT**, DOI 10.5066/P9EIV8L5
[8]  
Barlow P.M., 2012, U.S. Geological Survey Circular, V1376, DOI DOI 10.3133/CIR1376
[9]   Riverine Export of Aged Carbon Driven by Flow Path Depth and Residence Time [J].
Barnes, Rebecca T. ;
Butman, David E. ;
Wilson, Henry F. ;
Raymond, Peter A. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2018, 52 (03) :1028-1035
[10]  
Befus K.M., 2017, **DATA OBJECT**, DOI 10.5066/F7W37TGK