SDM: Semantic Distortion Measurement for Video Encryption

被引:4
作者
Hu, Yongquan [1 ]
Zhou, Wei [1 ]
Zhao, Shuxin [1 ]
Chen, Zhibo [1 ]
Li, Weiping [1 ]
机构
[1] Univ Sci & Technol China, CAS Key Lab Technol Geospatial Informat Proc & Ap, Hefei 230027, Anhui, Peoples R China
来源
PROCEEDINGS 2018 13TH IEEE INTERNATIONAL CONFERENCE ON AUTOMATIC FACE & GESTURE RECOGNITION (FG 2018) | 2018年
关键词
IMAGE QUALITY ASSESSMENT; SELECTIVE ENCRYPTION;
D O I
10.1109/FG.2018.00120
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Semantic information is important in video encryption. However, existing image quality assessment (IQA) methods, such as the peak signal to noise ratio (PSNR), are still widely applied to measure the encryption security. Generally, these traditional IQA methods aim to evaluate the image quality from the perspective of visual signal rather than semantic information. In this paper, we propose a novel semantic level full-reference image quality assessment (FR-IQA) method named Semantic Distortion Measurement (SDM) to measure the degree of semantic distortion for video encryption. Then, based on a semantic saliency dataset, we verify that the proposed SDM method outperforms state-of-the-art algorithms. Furthermore, we construct a Region Of Semantic Saliency (ROSS) video encryption system to demonstrate the effectiveness of our proposed SDM method in the practical application.
引用
收藏
页码:764 / 768
页数:5
相关论文
共 32 条
  • [1] SPICE: Semantic Propositional Image Caption Evaluation
    Anderson, Peter
    Fernando, Basura
    Johnson, Mark
    Gould, Stephen
    [J]. COMPUTER VISION - ECCV 2016, PT V, 2016, 9909 : 382 - 398
  • [2] [Anonymous], 2017, IEEE I CONF COMP VIS, DOI DOI 10.1109/ICCV.2017.322
  • [3] [Anonymous], 2014, PROC COMPUT SCI INF
  • [4] [Anonymous], EXPLOITING HIGH LEVE
  • [5] Bergeron C, 2017, INT CONF DIGIT SIG
  • [6] Similarity Metric Learning for Face Recognition
    Cao, Qiong
    Ying, Yiming
    Li, Peng
    [J]. 2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2013, : 2408 - 2415
  • [7] VSNR: A wavelet-based visual signal-to-noise ratio for natural images
    Chandler, Damon M.
    Hemami, Sheila S.
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (09) : 2284 - 2298
  • [8] Chang KY, 2011, IEEE I CONF COMP VIS, P914, DOI 10.1109/ICCV.2011.6126333
  • [9] Smart selective encryption of H.264/AVC videos using confidentiality metrics
    Dubois, L.
    Puech, W.
    Blanc-Talon, J.
    [J]. ANNALS OF TELECOMMUNICATIONS, 2014, 69 (11-12) : 569 - 583
  • [10] The Pascal Visual Object Classes (VOC) Challenge
    Everingham, Mark
    Van Gool, Luc
    Williams, Christopher K. I.
    Winn, John
    Zisserman, Andrew
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2010, 88 (02) : 303 - 338