IDENTIFICATION OF DIFFUSIVE STATES IN TRACKING APPLICATIONS USING UNSUPERVISED DEEP LEARNING METHODS

被引:3
作者
Kabbech, Helene [1 ]
Smal, Ihor [1 ]
机构
[1] Erasmus MC, Dept Cell Biol, Rotterdam, Netherlands
来源
2022 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (IEEE ISBI 2022) | 2022年
基金
荷兰研究理事会;
关键词
Single-particle tracking; trajectory segmentation; unsupervised learning; recurrent neural networks;
D O I
10.1109/ISBI52829.2022.9761672
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The most widely used method for analysis of diffusive motion in particle tracking is based on estimation of the mean squared displacement (MSD) and subsequently relevant motion parameters. This approach is only valid for a population of particles exhibiting a single type of motion (e.g., super or sub-diffusive). Thus, to deal with trajectories that describe dynamics with switching motion patterns, trajectory segmentation techniques are of major importance. Here, we propose an unsupervised trajectory segmentation technique, which employs the ideas of the state-of-theart image denoising "noise2noise" approach. Using typical single-particle tracking data, our method is capable of unsupervised trajectory segmentation in the most difficult situations (e.g. unknown number of purely diffusive states), and computation of the relevant parameters. The applicability of the method is demonstrated using simulated and real experimental data, showing that its performance is comparable to similar top performing supervised methods.
引用
收藏
页数:4
相关论文
共 7 条
  • [1] Particle Mobility Analysis Using Deep Learning and the Moment Scaling Spectrum
    Arts, Marloes
    Smal, Ihor
    Paul, Maarten W.
    Wyman, Claire
    Meijering, Erik
    [J]. SCIENTIFIC REPORTS, 2019, 9 (1)
  • [2] Objective comparison of particle tracking methods
    Chenouard, Nicolas
    Smal, Ihor
    de Chaumont, Fabrice
    Maska, Martin
    Sbalzarini, Ivo F.
    Gong, Yuanhao
    Cardinale, Janick
    Carthel, Craig
    Coraluppi, Stefano
    Winter, Mark
    Cohen, Andrew R.
    Godinez, William J.
    Rohr, Karl
    Kalaidzidis, Yannis
    Liang, Liang
    Duncan, James
    Shen, Hongying
    Xu, Yingke
    Magnusson, Klas E. G.
    Jalden, Joakim
    Blau, Helen M.
    Paul-Gilloteaux, Perrine
    Roudot, Philippe
    Kervrann, Charles
    Waharte, Francois
    Tinevez, Jean-Yves
    Shorte, Spencer L.
    Willemse, Joost
    Celler, Katherine
    van Wezel, Gilles P.
    Dan, Han-Wei
    Tsai, Yuh-Show
    Ortiz de Solorzano, Carlos
    Olivo-Marin, Jean-Christophe
    Meijering, Erik
    [J]. NATURE METHODS, 2014, 11 (03) : 281 - U247
  • [3] Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1
  • [4] Lehtinen J, 2018, PR MACH LEARN RES, V80
  • [5] Unsupervised learning of anomalous diffusion data an anomaly detection approach
    Munoz-Gil, Gorka
    Corominas, Guillem Guigo, I
    Lewenstein, Maciej
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2021, 54 (50)
  • [6] Objective comparison of methods to decode anomalous diffusion
    Munoz-Gil, Gorka
    Volpe, Giovanni
    Garcia-March, Miguel Angel
    Aghion, Erez
    Argun, Aykut
    Hong, Chang Beom
    Bland, Tom
    Bo, Stefano
    Conejero, J. Alberto
    Firbas, Nicolas
    Orts, Oscar
    Gentili, Alessia
    Huang, Zihan
    Jeon, Jae-Hyung
    Kabbech, Helene
    Kim, Yeongjin
    Kowalek, Patrycja
    Krapf, Diego
    Loch-Olszewska, Hanna
    Lomholt, Michael A.
    Masson, Jean-Baptiste
    Meyer, Philipp G.
    Park, Seongyu
    Requena, Borja
    Smal, Ihor
    Song, Taegeun
    Szwabinski, Janusz
    Thapa, Samudrajit
    Verdier, Hippolyte
    Volpe, Giorgio
    Widera, Artur
    Lewenstein, Maciej
    Metzler, Ralf
    Manzo, Carlo
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)
  • [7] Single-particle diffusional fingerprinting: A machine-learning framework for quantitative analysis of heterogeneous diffusion
    Pinholt, Henrik D.
    Bohr, Soren S-R
    Iversen, Josephine F.
    Boomsma, Wouter
    Hatzakis, Nikos S.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (31)