Radial symmetry results for fractional Laplacian systems

被引:53
|
作者
Liu, Baiyu [1 ]
Ma, Li [2 ]
机构
[1] Univ Sci & Technol Beijing, Sch Math & Phys, 30 Xueyuan Rd, Beijing 100083, Peoples R China
[2] Henan Normal Univ, Dept Math, Xinxiang 453007, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractional Laplacian system; Method of moving planes; Radial symmetry; SEMILINEAR ELLIPTIC-SYSTEMS; POROUS-MEDIUM TYPE; INTEGRAL-EQUATIONS; SCHRODINGER SYSTEMS; DIFFUSION-EQUATIONS; CRITICAL EXPONENTS; POSITIVE SOLUTIONS; DECAY SOLUTIONS; HALF-SPACES; WHOLE SPACE;
D O I
10.1016/j.na.2016.08.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we generalize the direct method of moving planes for the fractional Laplacian to the system case. Considering a coupled nonlinear system with fractional Laplacian, we first establish a decay at infinity principle and a narrow region principle. Using these principles, we then obtain two radial symmetry results for the decaying solutions of the fractional Laplacian systems. Finally, we apply our method to fractional Schrodinger systems and fractional Henon systems. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:120 / 135
页数:16
相关论文
共 50 条
  • [41] SYMMETRY AND LIOUVILLE THEOREM FOR FRACTIONAL LAPLACIAN EQUATION BOTH IN Rn AND R+n
    Li, Jing
    Guan, Xiaohong
    Wang, Yamin
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2017, 18 (12) : 2163 - 2176
  • [42] Multiplicity Results for the Fractional Laplacian in Expanding Domains
    Figueiredo, Giovany M.
    Pimenta, Marcos T. O.
    Siciliano, Gaetano
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2018, 15 (03)
  • [43] RADIAL SYMMETRY OF NONNEGATIVE SOLUTIONS FOR NONLINEAR INTEGRAL SYSTEMS
    Li, Zhenjie
    Zhou, Chunqin
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2022, 21 (03) : 837 - 844
  • [44] The radial symmetry of positive solutions for semilinear problems involving weighted fractional Laplacians
    Ying Wang
    Yanjing Qiu
    Qingping Yin
    Acta Mathematica Scientia, 2024, 44 : 1020 - 1035
  • [45] Radial symmetry of standing waves for nonlinear fractional Hardy-Schrodinger equation
    Wang, Guotao
    Ren, Xueyan
    Bai, Zhanbing
    Hou, Wenwen
    APPLIED MATHEMATICS LETTERS, 2019, 96 : 131 - 137
  • [46] The radial symmetry of positive solutions for semilinear problems involving weighted fractional Laplacians
    Wang, Ying
    Qiu, Yanjing
    Yin, Qingping
    ACTA MATHEMATICA SCIENTIA, 2024, 44 (03) : 1020 - 1035
  • [47] Regularity and symmetry results for the vectorial p-Laplacian
    Montoro, Luigi
    Muglia, Luigi
    Sciunzi, Berardino
    Vuono, Domenico
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2025, 251
  • [48] Symmetry of positive solutions of fractional Laplacian equation and system with Hardy–Sobolev exponent on the unit ball
    Junping Zhao
    Jingbo Dou
    Huaiyu Zhou
    Journal of Pseudo-Differential Operators and Applications, 2015, 6 : 503 - 519
  • [49] Symmetry of solutions for a fractional system
    Li, Yan
    Ma, Pei
    SCIENCE CHINA-MATHEMATICS, 2017, 60 (10) : 1805 - 1824
  • [50] SYMMETRY OF POSITIVE SOLUTIONS FOR SYSTEMS OF FRACTIONAL HARTREE EQUATIONS
    Deng, Yan
    Zhao, Junfang
    Chu, Baozeng
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2021, 14 (09): : 3085 - 3096