Radial symmetry results for fractional Laplacian systems

被引:54
作者
Liu, Baiyu [1 ]
Ma, Li [2 ]
机构
[1] Univ Sci & Technol Beijing, Sch Math & Phys, 30 Xueyuan Rd, Beijing 100083, Peoples R China
[2] Henan Normal Univ, Dept Math, Xinxiang 453007, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractional Laplacian system; Method of moving planes; Radial symmetry; SEMILINEAR ELLIPTIC-SYSTEMS; POROUS-MEDIUM TYPE; INTEGRAL-EQUATIONS; SCHRODINGER SYSTEMS; DIFFUSION-EQUATIONS; CRITICAL EXPONENTS; POSITIVE SOLUTIONS; DECAY SOLUTIONS; HALF-SPACES; WHOLE SPACE;
D O I
10.1016/j.na.2016.08.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we generalize the direct method of moving planes for the fractional Laplacian to the system case. Considering a coupled nonlinear system with fractional Laplacian, we first establish a decay at infinity principle and a narrow region principle. Using these principles, we then obtain two radial symmetry results for the decaying solutions of the fractional Laplacian systems. Finally, we apply our method to fractional Schrodinger systems and fractional Henon systems. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:120 / 135
页数:16
相关论文
共 41 条
[21]   Nonexistence results for a class of fractional elliptic boundary value problems [J].
Fall, Mouhamed Moustapha ;
Weth, Tobias .
JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 263 (08) :2205-2227
[22]   RADIAL SYMMETRY OF POSITIVE SOLUTIONS TO EQUATIONS INVOLVING THE FRACTIONAL LAPLACIAN [J].
Felmer, Patricio ;
Wang, Ying .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2014, 16 (01)
[23]   Positive solutions of the nonlinear Schrodinger equation with the fractional Laplacian [J].
Felmer, Patricio ;
Quaas, Alexander ;
Tan, Jinggang .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2012, 142 (06) :1237-1262
[24]   Effective dynamics for boson stars [J].
Froehlich, J. ;
Jonsson, B. L. G. ;
Lenzmann, E. .
NONLINEARITY, 2007, 20 (05) :1031-1075
[25]   SYMMETRY AND RELATED PROPERTIES VIA THE MAXIMUM PRINCIPLE [J].
GIDAS, B ;
NI, WM ;
NIRENBERG, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 68 (03) :209-243
[26]   Least energy solutions for a weakly coupled fractional Schrodinger system [J].
Guo, Qing ;
He, Xiaoming .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 132 :141-159
[27]   Symmetry via antisymmetric maximum principles in nonlocal problems of variable order [J].
Jarohs, Sven ;
Weth, Tobias .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2016, 195 (01) :273-291
[28]   Symmetry of solutions to some systems of integral equations [J].
Jin, C ;
Li, CM .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (06) :1661-1670
[29]   UNIQUENESS OF POSITIVE BOUND STATES TO SCHRODINGER SYSTEMS WITH CRITICAL EXPONENTS [J].
Li, Congming ;
Ma, Li .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2008, 40 (03) :1049-1057
[30]  
Li YY, 2004, J EUR MATH SOC, V6, P153