Radial symmetry results for fractional Laplacian systems

被引:54
作者
Liu, Baiyu [1 ]
Ma, Li [2 ]
机构
[1] Univ Sci & Technol Beijing, Sch Math & Phys, 30 Xueyuan Rd, Beijing 100083, Peoples R China
[2] Henan Normal Univ, Dept Math, Xinxiang 453007, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractional Laplacian system; Method of moving planes; Radial symmetry; SEMILINEAR ELLIPTIC-SYSTEMS; POROUS-MEDIUM TYPE; INTEGRAL-EQUATIONS; SCHRODINGER SYSTEMS; DIFFUSION-EQUATIONS; CRITICAL EXPONENTS; POSITIVE SOLUTIONS; DECAY SOLUTIONS; HALF-SPACES; WHOLE SPACE;
D O I
10.1016/j.na.2016.08.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we generalize the direct method of moving planes for the fractional Laplacian to the system case. Considering a coupled nonlinear system with fractional Laplacian, we first establish a decay at infinity principle and a narrow region principle. Using these principles, we then obtain two radial symmetry results for the decaying solutions of the fractional Laplacian systems. Finally, we apply our method to fractional Schrodinger systems and fractional Henon systems. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:120 / 135
页数:16
相关论文
共 41 条
[1]  
[Anonymous], ARXIV150607199
[2]  
Berestycki H., 1991, Bol. Soc. Bras. Mat, V22, P1, DOI [DOI 10.1007/BF01244896, 10.1007/BF01244896]
[3]  
Blasio G., 2012, J DIFFER EQUATIONS, V253, P2593
[4]   ANOMALOUS DIFFUSION IN DISORDERED MEDIA - STATISTICAL MECHANISMS, MODELS AND PHYSICAL APPLICATIONS [J].
BOUCHAUD, JP ;
GEORGES, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 195 (4-5) :127-293
[5]   A concave-convex elliptic problem involving the fractional Laplacian [J].
Braendle, C. ;
Colorado, E. ;
de Pablo, A. ;
Sanchez, U. .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2013, 143 (01) :39-71
[6]   Symmetry results for semilinear elliptic systems in the whole space [J].
Busca, J ;
Sirakov, B .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2000, 163 (01) :41-56
[7]   Positive solutions of nonlinear problems involving the square root of the Laplacian [J].
Cabre, Xavier ;
Tan, Jinggang .
ADVANCES IN MATHEMATICS, 2010, 224 (05) :2052-2093
[8]   An extension problem related to the fractional Laplacian [J].
Caffarelli, Luis ;
Silvestre, Luis .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (7-9) :1245-1260
[9]  
Caffarelli LA, 2010, ANN MATH, V171, P1903
[10]  
Chen W., 2010, AIMS BOOK SERIES DIF