Co-estimation of state-of-charge, capacity and resistance for lithium-ion batteries based on a high-fidelity electrochemical model

被引:239
|
作者
Zheng, Linfeng [1 ,2 ]
Zhang, Lei [3 ,4 ]
Zhu, Jianguo [1 ]
Wang, Guoxiu [2 ]
Jiang, Jiuchun [5 ]
机构
[1] Univ Technol Sydney, Fac Engn & Informat Technol, Sydney, NSW 2007, Australia
[2] Univ Technol Sydney, Ctr Clean Energy Technol, Sydney, NSW 2007, Australia
[3] Beijing Inst Technol, Collaborat Innovat Ctr Elect Vehicles Beijing, Beijing 100081, Peoples R China
[4] Beijing Inst Technol, Natl Engn Lab Elect Vehicles, Beijing 100081, Peoples R China
[5] Beijing Jiaotong Univ, Natl Act Distribut Network Technol Res Ctr, Beijing 100044, Peoples R China
关键词
Lithium-ion battery electrochemical model; State of charge (SOC) estimation; Battery capacity estimation; Battery resistance estimation; Battery management system (BMS); OPEN-CIRCUIT VOLTAGE; ELECTRIC VEHICLES; MANAGEMENT-SYSTEMS; AMBIENT-TEMPERATURES; OBSERVER; CELL; SIMPLIFICATION; ALGORITHMS; PARAMETERS; FRAMEWORK;
D O I
10.1016/j.apenergy.2016.08.016
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Lithium-ion batteries have been widely used as enabling energy storage in many industrial fields. Accurate modeling and state estimation play fundamental roles in ensuring safe, reliable and efficient operation of lithium-ion battery systems. A physics-based electrochemical model (EM) is highly desirable for its inherent ability to push batteries to operate at their physical limits. For state-of-charge (SOC) estimation, the continuous capacity fade and resistance deterioration are more prone to erroneous estimation results. In this paper, trinal proportional-integral (PI) observers with a reduced physics-based EM are proposed to simultaneously estimate SOC, capacity and resistance for lithium-ion batteries. Firstly, a numerical solution for the employed model is derived. PI observers are then developed to realize the co-estimation of battery SOC, capacity and resistance. The moving-window ampere-hour counting technique and the iteration-approaching method are also incorporated for the estimation accuracy improvement. The robustness of the proposed approach against erroneous initial values, different battery cell aging levels and ambient temperatures is systematically evaluated, and the experimental results verify the effectiveness of the proposed method. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:424 / 434
页数:11
相关论文
共 50 条
  • [1] Co-estimation of capacity and state-of-charge for lithium-ion batteries in electric vehicles
    Li, Xiaoyu
    Wang, Zhenpo
    Zhang, Lei
    ENERGY, 2019, 174 : 33 - 44
  • [2] Co-Estimation of State-of-Charge and State-of- Health for Lithium-Ion Batteries Using an Enhanced Electrochemical Model
    Gao, Yizhao
    Liu, Kailong
    Zhu, Chong
    Zhang, Xi
    Zhang, Dong
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2022, 69 (03) : 2684 - 2696
  • [3] Online state-of-charge and capacity co-estimation for lithium-ion batteries under aging and varying temperatures
    Son, Donghee
    Song, Youngbin
    Park, Shina
    Oh, Junseok
    Kim, Sang Woo
    ENERGY, 2025, 316
  • [4] Co-Estimation of State of Charge and Capacity for Lithium-Ion Batteries with Multi-Stage Model Fusion Method
    Xiong, Rui
    Wang, Ju
    Shen, Weixiang
    Tian, Jinpeng
    Mu, Hao
    ENGINEERING, 2021, 7 (10) : 1469 - 1482
  • [5] Co-Estimation of State of Charge and State of Health for Lithium-Ion Batteries Based on Fractional-Order Calculus
    Hu, Xiaosong
    Yuan, Hao
    Zou, Changfu
    Li, Zhe
    Zhang, Lei
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2018, 67 (11) : 10319 - 10329
  • [6] Co-estimation of state-of-charge and state-of-temperature for large-format lithium-ion batteries based on a novel electrothermal model
    Yu, Chao
    Zhu, Jiangong
    Liu, Wenxue
    Dai, Haifeng
    Wei, Xuezhe
    GREEN ENERGY AND INTELLIGENT TRANSPORTATION, 2024, 3 (04):
  • [7] Co-estimation of state of charge and state of power for lithium-ion batteries based on fractional variable-order model
    Lai, Xin
    He, Long
    Wang, Shuyu
    Zhou, Long
    Zhang, Yinfan
    Sun, Tao
    Zheng, Yuejiu
    JOURNAL OF CLEANER PRODUCTION, 2020, 255
  • [8] State-of-Charge Estimation for Lithium-Ion Batteries via a Coupled Thermal-Electrochemical Model
    Tang, Shuxia
    Wang, Yebin
    Sahinoglu, Zafer
    Wada, Toshihiro
    Hara, Satoshi
    Krstic, Miroslav
    2015 AMERICAN CONTROL CONFERENCE (ACC), 2015, : 5871 - 5877
  • [9] State-of-charge and state-of-health estimation for lithium-ion batteries based on dynamic impedance technique
    Hung, Min-Hsuan
    Lin, Chang-Hua
    Lee, Liang-Cheng
    Wang, Chien-Ming
    JOURNAL OF POWER SOURCES, 2014, 268 : 861 - 873
  • [10] Co-estimation of lithium-ion battery state of charge and state of temperature based on a hybrid electrochemical-thermal-neural-network model
    Feng, Fei
    Teng, Sangli
    Liu, Kailong
    Xie, Jiale
    Xie, Yi
    Liu, Bo
    Li, Kexin
    JOURNAL OF POWER SOURCES, 2020, 455