Nanocomposites LiMxFe1-xPO4/C synthesized via freeze drying assisted sol-gel routine and their magnetic and electrochemical properties

被引:16
作者
Liu, Liying [1 ]
Cao, Zujie [1 ]
Cui, Yanyan [1 ]
Ke, Xi [1 ]
Zeng, Guoxun [1 ]
Liu, Jun [1 ]
Liu, Dan [2 ]
Li, Qinghai [2 ]
Lai, Jian [2 ]
Shi, Zhicong [1 ]
Chou, Shulei [3 ]
机构
[1] Guangdong Univ Technol, Smart Energy Res Ctr, Sch Mat & Energy, Guangdong Prov Key Lab Funct Soft Condensed Matte, Guangzhou, Guangdong, Peoples R China
[2] Dynavolt Renewable Energy Technol Co Ltd, Shenzhen, Peoples R China
[3] Univ Wollongong, Australian Inst Innovat Mat, Inst Superconducting & Elect Mat, Wollongong, NSW, Australia
基金
中国国家自然科学基金;
关键词
Lithium ion battery; Cathode material; Lithium manganese phosphate; Iron substituting; Magnetic property; POSITIVE-ELECTRODE MATERIALS; CATHODE MATERIALS; SOLVOTHERMAL SYNTHESIS; CONTROLLABLE SYNTHESIS; ION; PERFORMANCE; LIFEPO4; FE; NANOSTRUCTURES; OLIVINES;
D O I
10.1016/j.jallcom.2018.11.174
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nanocomposites LiMnxFe1-xPO4/C (x = 1, 5/6, 2/3,1/2) are synthesized by a sol-gel route combined with freeze drying. Fe2+ substituted samples coated by high-ordered carbon have the same olivine structure of LiMnPO4/C but reduced cell volumes. Fe2+ substituting greatly influences magnetic characteristics of LiMnPO4/C and slight amounts of Fe2P impurity in Fe2+ doped samples are verified by magnetic tests. Fe2+ substituted samples exhibit much better electrochemical properties. Among them, LiMn1/2Fe1/2PO4/C displays the best rate capacity and cyclic stability. Its initial discharge capacity reaches 140.1 mAh g(-1) and remains at 132.5 mAh g(-1) after 100 cycles at 2C, remarkably higher than those of LiMnPO4/C. The superior electrochemical performances are mainly attributed to small charge-transfer impedance, fast Li+ diffusion, residual carbon and existence of Fe2P with excellent electronic conductivity. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:339 / 346
页数:8
相关论文
共 41 条
  • [31] Hierarchical structured LiMn0.5Fe0.5PO4 spheres synthesized by template-engaged reaction as cathodes for high power Li-ion batteries
    Xiang, Wei
    Wang, En-Hui
    Chen, Ming-Zhe
    Shen, Hui-Hui
    Chou, Shu-Lei
    Chen, Hong
    Guo, Xiao-Dong
    Zhong, Ben-He
    Wang, Xinlong
    [J]. ELECTROCHIMICA ACTA, 2015, 178 : 353 - 360
  • [32] Controllable synthesis of N-C@LiFePO4 nanospheres as advanced cathode of lithium ion batteries
    Xiong, Q. Q.
    Lou, J. J.
    Teng, X. J.
    Lu, X. X.
    Liu, S. Y.
    Chi, H. Z.
    Ji, Z. G.
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 743 : 377 - 382
  • [33] Ethylene glycol (EG) solvothermal synthesis of flower-like LiMnPO4 nanostructures self-assembled with (010) nanobelts for Li-ion battery positive cathodes
    Xu, Gang
    Yang, Yongrong
    Li, Lingling
    Li, Feng
    Wang, Jiangwei
    Bao, Liang
    Li, Xiang
    Shen, Ge
    Han, Gaorong
    [J]. CRYSTENGCOMM, 2016, 18 (18): : 3282 - 3288
  • [34] Enhanced kinetic behaviors of LiMn0.5Fe0.5PO4/C cathode material by Fe substitution and carbon coating
    Yan, Su-Yuan
    Wang, Cheng-Yang
    Gu, Rong-Min
    Li, Ming-Wei
    [J]. JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2015, 19 (10) : 2943 - 2950
  • [35] Synergetic Fe substitution and carbon connection in LiMn1-xFexPO4/C cathode materials for enhanced electrochemical performances
    Yan, Su-Yuan
    Wang, Cheng-Yang
    Gu, Rong-Min
    Sun, Shuai
    Li, Ming-Wei
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 628 : 471 - 479
  • [36] How to make lithium iron phosphate better: a review exploring classical modification approaches in-depth and proposing future optimization methods
    Yang, Zhigao
    Dai, Yu
    Wang, Shengping
    Yu, Jingxian
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (47) : 18210 - 18222
  • [37] Magnetic studies of phospho-olivine electrodes in relation with their electrochemical performance in Li-ion batteries
    Zaghib, K.
    Mauger, A.
    Gendron, F.
    Julien, C. M.
    [J]. SOLID STATE IONICS, 2008, 179 (1-6) : 16 - 23
  • [38] Optimized electrochemical performance of LiFePO4 at 60°C with purity controlled by SQUID magnetometry
    Zaghib, K.
    Ravet, N.
    Gauthier, M.
    Gendron, F.
    Mauger, A.
    Goodenough, J. B.
    Julien, C. M.
    [J]. JOURNAL OF POWER SOURCES, 2006, 163 (01) : 560 - 566
  • [39] LiFePO4: From molten ingot to nanoparticles with high-rate performance in Li-ion batteries
    Zaghib, K.
    Charest, P.
    Dontigny, M.
    Guerfi, A.
    Lagace, M.
    Mauger, A.
    Kopec, M.
    Julien, C. M.
    [J]. JOURNAL OF POWER SOURCES, 2010, 195 (24) : 8280 - 8288
  • [40] Optimized Optimized hydrothermal synthesis and electrochemical performance of LiMnPO4/C cathode materials using high specific area spherical structure Li3PO4
    Zhang, Jun
    Luo, Shaohua
    Wang, Qing
    Wang, Zhiyuan
    Hao, Aimin
    Zhang, Yahui
    Liu, Yanguo
    Xu, Qian
    Zhai, Yuchun
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 701 : 433 - 438