Nanoporous BiVO4 nanoflake array photoanode for efficient photoelectrochemical water splitting

被引:14
作者
Wang, Jingjing [1 ]
Liu, Canjun [1 ]
Liu, Yang [2 ]
Chen, Shu [1 ]
机构
[1] Hunan Univ Sci & Technol, Sch Chem & Chem Engn,Key Lab Theoret Organ Chem &, Hunan Prov Key Lab Adv Mat New Energy Storage & C, Hunan Prov Key Lab Controllable Preparat & Funct, Xiangtan 411201, Hunan, Peoples R China
[2] Cent South Univ, Sch Chem & Chem Engn, Changsha 410083, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
HETEROJUNCTION PHOTOANODES; BISMUTH VANADATE; NANOROD ARRAY; THIN-FILMS; OXIDATION; HEMATITE; PHOTOCATHODES; PERFORMANCE; FABRICATION; OXIDE;
D O I
10.1039/d0ce00017e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
BiVO4 has been considered as a promising material for photoelectrochemical (PEC) hydrogen production. To improve the charge transport performance of BiVO4 photoanodes, it is necessary to develop nanostructured BiVO4 array photoanodes. In the present study, an in situ transformation strategy (WO3 -> Bi2WO6 -> BiVO4) was designed and developed to fabricate a nanoporous BiVO4 nanoflake array (NFA) film. As revealed from the characterization results, the BiVO4 nanoflakes were vertically grown on FTO substrates. Note that the nanoflakes were composed of wormlike-shaped particles, thereby forming a nanoporous structure. The as-prepared films as photoanodes exhibited excellent visible-light PEC performance. Under visible light illumination, the photocurrent density of the BiVO4 NFA photoanode without a cocatalyst was 1.0 mA cm(-2) at 1.23 V-RHE, comparable to the reported BiVO4 array photoanode without cocatalysts. In this study, a novel and simple way was proposed to fabricate high-quality BiVO4 array photoanodes.
引用
收藏
页码:1914 / 1921
页数:8
相关论文
共 52 条
[1]   Facile surface treatment on Cu2O photocathodes for enhancing the photoelectrochemical response [J].
Cao, Dawei ;
Nasori, Nasori ;
Wang, Zhijie ;
Wen, Liaoyong ;
Xu, Rui ;
Mi, Yan ;
Lei, Yong .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2016, 198 :398-403
[2]   Synthesis of monoclinic BiVO4 nanorod array for photoelectrochemical water oxidation: Seed layer effects on growth of BiVO4 nanorod array [J].
Chen, Yu-Shiang ;
Lin, Lu-Yin .
ELECTROCHIMICA ACTA, 2018, 285 :164-171
[3]   Metal Doping of BiVO4 by Composite Electrodeposition with Improved Photoelectrochemical Water Oxidation [J].
Cho, Sung Ki ;
Park, Hyun S. ;
Lee, Heung Chan ;
Nam, Ki Min ;
Bard, Allen J. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (44) :23048-23056
[4]   Solar water oxidation using nickel-borate coupled BiVO4 photoelectrodes [J].
Choi, Sung Kyu ;
Choi, Wonyong ;
Park, Hyunwoong .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (17) :6499-6507
[5]   ELECTROCHEMICAL PHOTOLYSIS OF WATER AT A SEMICONDUCTOR ELECTRODE [J].
FUJISHIMA, A ;
HONDA, K .
NATURE, 1972, 238 (5358) :37-+
[6]   Selective Deposition of Ag3PO4 on Specific Facet of BiVO4 Nanoplate for Enhanced Photoelectrochemical Performance [J].
Gao, Bin ;
Wang, Tao ;
Fan, Xiaoli ;
Gong, Hao ;
Meng, Xianguang ;
Li, Peng ;
Feng, Yaya ;
Huang, Xianli ;
He, Jianping ;
Ye, Jinhua .
SOLAR RRL, 2018, 2 (09)
[7]   Photoinduced Charge-Tran sfer Dynamics in WO3/BiVO4 Photoanodes Probed through Midinfrared Transient Absorption Spectroscopy [J].
Grigioni, Ivan ;
Abdellah, Mohamed ;
Corti, Annamaria ;
Dozzi, Maria Vittoria ;
Hammarstrom, Leif ;
Selli, Elena .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (43) :14042-14045
[8]   Synthesis of BiVO4 nanoflake array films for photoelectrochemical water oxidation [J].
He, Huichao ;
Berglund, Sean P. ;
Rettie, Alexander J. E. ;
Chemelewski, William D. ;
Xiao, Peng ;
Zhang, Yunhuai ;
Mullins, C. Buddie .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (24) :9371-9379
[9]   Thin film photoelectrodes for solar water splitting [J].
He, Yumin ;
Hamann, Thomas ;
Wang, Dunwei .
CHEMICAL SOCIETY REVIEWS, 2019, 48 (07) :2182-2215
[10]   Evaluation of the charge transfer kinetics of spin-coated BiVO4 thin films for sun-driven water photoelectrolysis [J].
Hernandez, Simelys ;
Gerardi, Gianluca ;
Bejtka, Katarzyna ;
Fina, Alberto ;
Russo, Nunzio .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2016, 190 :66-74