The semi-classical Maupertuis-Jacobi correspondence for quasi-periodic Hamiltonian flows with applications to linear water waves theory

被引:16
作者
Dobrokhotov, Sergey [1 ,2 ]
Rouleux, Michel [3 ,4 ]
机构
[1] Russian Acad Sci, Inst Problems Mech, Moscow 119526, Russia
[2] Moscow Inst Phys & Technol, Moscow 119526, Russia
[3] Ctr Phys Theor, F-13288 Marseille 9, France
[4] Univ Sud Toulon Var, UMR Campus Luminy 6207, F-13288 Marseille 9, France
关键词
Maupertuis principle; quasi-periodic Hamiltonian flows; invariant tori; Birkhoff normal form; Liouville metrics; Maslov theory; linear water waves theory; INVARIANT TORI; EFFECTIVE STABILITY; OPERATORS; METRICS;
D O I
10.3233/ASY-2011-1045
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We extend to the semi-classical setting the Maupertuis-Jacobi correspondence for a pair of Hamiltonians (H(x, hD(x)), H(x, hD(x))). If H(x, p) is completely integrable, or has merely an invariant Diophantine torus. in energy surface {H = E}, then we can construct a family of quasi-modes for H(x, hD(x)) at the corresponding energy E. This applies in particular to the linear theory of water waves, and determines trapped modes by an island, from the knowledge of Liouville metrics.
引用
收藏
页码:33 / 73
页数:41
相关论文
共 57 条
[1]  
[Anonymous], 1983, INT SERIES MONOGRAPH
[2]  
[Anonymous], 1976, Introduction to Ergodic Theory
[3]  
[Anonymous], MODERN GEOMETRY METH
[4]  
[Anonymous], MODERN GEOMETRY METH
[5]  
Arnold V., 1976, METHODES MATH MECANI
[6]  
Arnold V., 1967, FUNCT ANAL APPL+, P1
[7]  
AUDIN M, 2001, SYSTEMES HAMILTONIEN
[8]   On complex structures on two-dimensional tori admitting metrics with nontrivial quadratic integral [J].
Babenko, IK ;
Nekhoroshev, NN .
MATHEMATICAL NOTES, 1995, 58 (5-6) :1129-1135
[9]  
BATES S, 1997, BERKELEY MATH LECT N, V88
[10]   Explicit formulas for generalized action-angle variables in a neighborhood of an isotropic torus and their application [J].
Belov, VV ;
Dobrokhotov, SY ;
Maksimov, VA .
THEORETICAL AND MATHEMATICAL PHYSICS, 2003, 135 (03) :765-791