Invariants and wave breaking analysis of a Camassa-Holm type equation with quadratic and cubic non-linearities

被引:18
|
作者
Freire, Igor Leite [1 ]
Sales Filho, Nazime [2 ,3 ]
de Souza, Ligia Correa [2 ,4 ]
Toffoli, Carlos Eduardo [2 ,4 ]
机构
[1] Univ Fed ABC, Ctr Matemat Comp & Cognicao, Ave Estados 5001, BR-09210580 Santo Andre, SP, Brazil
[2] Univ Fed ABC, Programa Posgrad Matemat, Ave Estados 5001, BR-09210580 Santo Andre, SP, Brazil
[3] Univ Fed Mato Grosso, Fac Engn, Av Fernando Correa da Costa 2367, BR-78060900 Cuiaba, MT, Brazil
[4] Inst Fed Educ Ciencia & Tecnol Sao Paulo, Campus Campos do Jordao, BR-12460000 Campos Do Jordao, SP, Brazil
关键词
Camassa-Holm type equations; Well-posedness; Wave breaking; Symmetries; Conservation laws; SHALLOW-WATER EQUATION; SYMBOLIC COMPUTATION; DEGASPERIS-PROCESI; CONSERVATION-LAWS; WELL-POSEDNESS; CAUCHY-PROBLEM; SYMMETRIES; STABILITY; INSTABILITY; EXISTENCE;
D O I
10.1016/j.jde.2020.04.041
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A non-local evolution equation of the Camassa-Holm type with dissipation is considered. The local well-posedness of the solutions of the Cauchy problem involving the equation is established via Kato's approach and the wave breaking scenario is also described. To prove such result, we firstly construct conserved currents for the equation and from them, conserved quantities. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:56 / 77
页数:22
相关论文
共 50 条
  • [1] Wave-breaking and persistence properties in weighted LP spaces for a Camassa-Holm type equation with quadratic and cubic nonlinearities
    Cheng, Wenguang
    Lin, Ji
    MONATSHEFTE FUR MATHEMATIK, 2024, 205 (01): : 103 - 117
  • [2] New wave breaking for the Camassa-Holm equation
    Han, Runjie
    Yang, Shaojie
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 422 : 604 - 613
  • [3] Wave-breaking analysis and weak multi-peakon solutions for a generalized cubic-quintic Camassa-Holm type equation
    Weng, Weifang
    Qiao, Zhijun
    Yan, Zhenya
    MONATSHEFTE FUR MATHEMATIK, 2023, 200 (03): : 667 - 713
  • [4] Integrability, existence of global solutions, and wave breaking criteria for a generalization of the Camassa-Holm equation
    da Silva, Priscila Leal
    Freire, Igor Leite
    STUDIES IN APPLIED MATHEMATICS, 2020, 145 (03) : 537 - 562
  • [5] A Note on a Camassa-Holm Type Equation
    Coclite, Giuseppe Maria
    di Ruvo, Lorenzo
    JOURNAL OF APPLIED NONLINEAR DYNAMICS, 2025, 14 (02) : 299 - 311
  • [6] Wave Breaking for the Rotational Camassa-Holm Equation on the Circle
    Chen, Rendong
    JOURNAL OF MATHEMATICS, 2022, 2022
  • [7] Wave-breaking phenomena and persistence properties for a nonlinear dissipative Camassa-Holm equation
    Fu, Shanshan
    Wang, Ying
    APPLICABLE ANALYSIS, 2023, 102 (17) : 4805 - 4827
  • [8] Persistence properties of a Camassa-Holm type equation with (n+1)-order non-linearities
    Freire, Igor Leite
    JOURNAL OF MATHEMATICAL PHYSICS, 2022, 63 (01)
  • [9] A sine-type Camassa-Holm equation: local well-posedness, Holder continuity, and wave-breaking analysis
    Qin, Guoquan
    Yan, Zhenya
    Guo, Boling
    MONATSHEFTE FUR MATHEMATIK, 2022, 199 (04): : 853 - 890
  • [10] Wave Breaking of the Camassa-Holm Equation
    Jiang, Zaihong
    Ni, Lidiao
    Zhou, Yong
    JOURNAL OF NONLINEAR SCIENCE, 2012, 22 (02) : 235 - 245