Nanoscale Lithography on Mono layer Graphene Using Hydrogenation and Oxidation

被引:134
作者
Byun, Ik-Su [2 ]
Yoon, Duhee [1 ]
Choi, Jin Sik [2 ]
Hwang, Inrok [2 ]
Lee, Duk Hyun [2 ]
Lee, Mi Jung [2 ]
Kawai, Tomoji [2 ,3 ]
Son, Young-Woo [4 ]
Jia, Quanxi [2 ,5 ]
Cheong, Hyeonsik [1 ]
Park, Bae Ho [2 ]
机构
[1] Sogang Univ, Dept Phys, Seoul 121742, South Korea
[2] Konkuk Univ, Div Quantum Phases & Devices, Dept Phys, Seoul 143701, South Korea
[3] Osaka Univ, Inst Sci & Ind Res, Osaka 5670047, Japan
[4] Korea Inst Adv Study, Seoul 130722, South Korea
[5] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA
关键词
graphene hydrogenation; graphene oxidation; nanoscale lithography; atomic force microscope; Raman spectroscopy; ATOMIC-FORCE MICROSCOPE; RAMAN-SPECTRA; OXIDE-FILMS; NANOLITHOGRAPHY; BANDGAP;
D O I
10.1021/nn201601m
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Monolayer graphene is one of the most interesting materials applicable to next-generation electronic devices due to Its transport properties. However, realization of graphene devices requires suitable nanoscale lithography as well as a method:to open a band gap in monolayer graphene. Nanoscale hydrogenation and oxidation are promising methods to open an energy band, gap by modification of surface structures and to fabricate nanostructures such as graphene nanoribbons (GNRs). Until now It has been difficult to fabricate nanoscale devices' consisting of both hydrogenated and oxidized graphene because the hydrogenation of graphene requires a complicated process composed of large-scale chemical modification, nanoscale patterning, and etching. We report on nanoscale hydrogenation and oxidation of graphene under normal atmospheric conditions and at room temperature without etching, wet process, or even any gas treatment by controlling just an external bias through atomic force Microscope lithography. Both the lithographically defined nanoscale hydrogenation and oxidation have been confirmed by micro-Raman spectroscopy measurements. Patterned hydrogenated. and oxidized graphene show insulating behaviors, and their friction values are several times larger than those of graphene. These differences can be used for fabricating electronic or electromechanical devices based on graphene.
引用
收藏
页码:6417 / 6424
页数:8
相关论文
共 34 条
  • [1] Electric field: A catalyst for hydrogenation of graphene
    Ao, Z. M.
    Peeters, F. M.
    [J]. APPLIED PHYSICS LETTERS, 2010, 96 (25)
  • [2] Atomic force microscope tip-induced local oxidation of silicon: Kinetics, mechanism, and nanofabrication
    Avouris, P
    Hertel, T
    Martel, R
    [J]. APPLIED PHYSICS LETTERS, 1997, 71 (02) : 285 - 287
  • [3] Balog R, 2010, NAT MATER, V9, P315, DOI [10.1038/nmat2710, 10.1038/NMAT2710]
  • [4] Fabrication of nanostructures on Si(100) and GaAs(100) by local anodic oxidation
    Cervenka, Jiri
    Kalousek, Radek
    Bartosik, Miroslav
    Skoda, David
    Tomanec, Ondrej
    Sikola, Tomas
    [J]. APPLIED SURFACE SCIENCE, 2006, 253 (05) : 2373 - 2378
  • [5] Control of Graphene's Properties by Reversible Hydrogenation: Evidence for Graphane
    Elias, D. C.
    Nair, R. R.
    Mohiuddin, T. M. G.
    Morozov, S. V.
    Blake, P.
    Halsall, M. P.
    Ferrari, A. C.
    Boukhvalov, D. W.
    Katsnelson, M. I.
    Geim, A. K.
    Novoselov, K. S.
    [J]. SCIENCE, 2009, 323 (5914) : 610 - 613
  • [6] Raman spectrum of graphene and graphene layers
    Ferrari, A. C.
    Meyer, J. C.
    Scardaci, V.
    Casiraghi, C.
    Lazzeri, M.
    Mauri, F.
    Piscanec, S.
    Jiang, D.
    Novoselov, K. S.
    Roth, S.
    Geim, A. K.
    [J]. PHYSICAL REVIEW LETTERS, 2006, 97 (18)
  • [7] Interpretation of Raman spectra of disordered and amorphous carbon
    Ferrari, AC
    Robertson, J
    [J]. PHYSICAL REVIEW B, 2000, 61 (20) : 14095 - 14107
  • [8] The rise of graphene
    Geim, A. K.
    Novoselov, K. S.
    [J]. NATURE MATERIALS, 2007, 6 (03) : 183 - 191
  • [9] Nanolithography and manipulation of graphene using an atomic force microscope
    Giesbers, A. J. M.
    Zeitler, U.
    Neubeck, S.
    Freitag, F.
    Novoselov, K. S.
    Maan, J. C.
    [J]. SOLID STATE COMMUNICATIONS, 2008, 147 (9-10) : 366 - 369
  • [10] Energy band-gap engineering of graphene nanoribbons
    Han, Melinda Y.
    Oezyilmaz, Barbaros
    Zhang, Yuanbo
    Kim, Philip
    [J]. PHYSICAL REVIEW LETTERS, 2007, 98 (20)