Permafrost Degradation Diminishes Terrestrial Ecosystem Carbon Sequestration Capacity on the Qinghai-Tibetan Plateau

被引:26
作者
Liu, Lei [1 ,2 ,3 ]
Zhuang, Qianlai [3 ]
Zhao, Dongsheng [1 ]
Zheng, Du [1 ,2 ]
Kou, Dan [3 ,4 ]
Yang, Yuanhe [2 ,5 ]
机构
[1] Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Key Lab Land Surface Pattern & Simulat, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Beijing, Peoples R China
[3] Purdue Univ, Dept Earth Atmospher & Planetary Sci, W Lafayette, IN 47907 USA
[4] Univ Eastern Finland, Dept Environm & Biol Sci, Biogeochem Res Grp, Kuopio, Finland
[5] Chinese Acad Sci, Inst Bot, State Key Lab Vegetat & Environm Change, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Permafrost degradation; C-N feedbacks; deep soil; Tibetan Plateau; NET PRIMARY PRODUCTIVITY; SOIL ORGANIC-CARBON; CLIMATE-CHANGE; ALPINE MEADOW; ATMOSPHERIC CO2; NITROGEN AVAILABILITY; DYNAMICS; SENSITIVITY; MODEL; VARIABILITY;
D O I
10.1029/2021GB007068
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Effects of permafrost degradation on carbon (C) and nitrogen (N) cycling on the Qinghai-Tibetan Plateau (QTP) have rarely been analyzed. This study used a revised process-based biogeochemical model to quantify the effects in the region during the 21st century. We found that permafrost degradation would expose 0.61 +/- 0.26 (mean +/- SD) and 1.50 +/- 0.15 Pg C of soil organic carbon under the representative concentration pathway (RCP) 4.5 and the RCP 8.5, respectively. Among them, more than 20% will be decomposed, enhancing heterotrophic respiration by 8.62 +/- 4.51 (RCP 4.5) and 33.66 +/- 14.03 (RCP 8.5) Tg C/yr in 2099. Deep soil N supply due to thawed permafrost is not accessible to plants, only stimulating net primary production by 7.15 +/- 4.83 (RCP 4.5) and 24.27 +/- 9.19 (RCP 8.5) Tg C/yr in 2099. As a result, the single effect of permafrost degradation would cumulatively weaken the regional C sink by 209.44 +/- 137.49 (RCP 4.5) and 371.06 +/- 151.70 (RCP 8.5) Tg C during 2020-2099. However, when factors of climate change, CO2 increasing and permafrost degradation are all considered, the permafrost region on the QTP would be a stronger C sink in the 21st century. Permafrost degradation has a greater influence on C balance of alpine meadows than alpine steppes on the QTP. The shallower active layer, higher soil C and N stocks, and wetter environment in alpine meadows are responsible for its stronger response to permafrost degradation. This study highlights that permafrost degradation could continue to release large amounts of C to the atmosphere irrespective of potentially more nitrogen available from deep soils.
引用
收藏
页数:20
相关论文
共 111 条
  • [1] Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: an expert assessment
    Abbott, Benjamin W.
    Jones, Jeremy B.
    Schuur, Edward A. G.
    Chapin, F. Stuart, III
    Bowden, William B.
    Bret-Harte, M. Syndonia
    Epstein, Howard E.
    Flannigan, Michael D.
    Harms, Tamara K.
    Hollingsworth, Teresa N.
    Mack, Michelle C.
    McGuire, A. David
    Natali, Susan M.
    Rocha, Adrian V.
    Tank, Suzanne E.
    Turetsky, Merritt R.
    Vonk, Jorien E.
    Wickland, Kimberly P.
    Aiken, George R.
    Alexander, Heather D.
    Amon, Rainer M. W.
    Benscoter, Brian W.
    Bergeron, Yves
    Bishop, Kevin
    Blarquez, Olivier
    Bond-Lamberty, Ben
    Breen, Amy L.
    Buffam, Ishi
    Cai, Yihua
    Carcaillet, Christopher
    Carey, Sean K.
    Chen, Jing M.
    Chen, Han Y. H.
    Christensen, Torben R.
    Cooper, Lee W.
    Cornelissen, J. Hans C.
    de Groot, William J.
    DeLuca, Thomas H.
    Dorrepaal, Ellen
    Fetcher, Ned
    Finlay, Jacques C.
    Forbes, Bruce C.
    French, Nancy H. F.
    Gauthier, Sylvie
    Girardin, Martin P.
    Goetz, Scott J.
    Goldammer, Johann G.
    Gough, Laura
    Grogan, Paul
    Guo, Laodong
    [J]. ENVIRONMENTAL RESEARCH LETTERS, 2016, 11 (03):
  • [2] Soil microbial biomass and extracellular enzymes regulate nitrogen mineralization in a wheat-maize cropping system after three decades of fertilization in a Chinese Ferrosol
    Ali, Sehrish
    Dongchu Li
    Jing, Huang
    Ahmed, Waqas
    Abbas, Muhammad
    Qaswar, Muhammad
    Anthonio, Christian Kofi
    Lu, Zhang
    Boren Wang
    Yongmei Xu
    Huimin Zhang
    [J]. JOURNAL OF SOILS AND SEDIMENTS, 2021, 21 (01) : 281 - 294
  • [3] Dwelling in the deep - strongly increased root growth and rooting depth enhance plant interactions with thawing permafrost soil
    Blume-Werry, Gesche
    Milbau, Ann
    Teuber, Laurenz M.
    Johansson, Margareta
    Dorrepaal, Ellen
    [J]. NEW PHYTOLOGIST, 2019, 223 (03) : 1328 - 1339
  • [4] Potential CO2 emissions from defrosting permafrost soils of the Qinghai-Tibet Plateau under different scenarios of climate change in 2050 and 2070
    Bosch, Anna
    Schmidt, Karsten
    He, Jin-Sheng
    Doerfer, Corina
    Scholten, Thomas
    [J]. CATENA, 2017, 149 : 221 - 231
  • [5] Quantifying uncertainties of permafrost carbon-climate feedbacks
    Burke, Eleanor J.
    Ekici, Altug
    Huang, Ye
    Chadburn, Sarah E.
    Huntingford, Chris
    Ciais, Philippe
    Friedlingstein, Pierre
    Peng, Shushi
    Krinner, Gerhard
    [J]. BIOGEOSCIENCES, 2017, 14 (12) : 3051 - 3066
  • [6] Estimating the Permafrost-Carbon Climate Response in the CMIP5 Climate Models Using a Simplified Approach
    Burke, Eleanor J.
    Jones, Chris D.
    Koven, Charles D.
    [J]. JOURNAL OF CLIMATE, 2013, 26 (14) : 4897 - 4909
  • [7] The impact of climate change and anthropogenic activities on alpine grassland over the Qinghai-Tibet Plateau
    Chen, Baoxiong
    Zhang, Xianzhou
    Tao, Jian
    Wu, Jianshuang
    Wang, Jingsheng
    Shi, Peili
    Zhang, Yangjian
    Yu, Chengqun
    [J]. AGRICULTURAL AND FOREST METEOROLOGY, 2014, 189 : 11 - 18
  • [8] Determinants of carbon release from the active layer and permafrost deposits on the Tibetan Plateau
    Chen, Leiyi
    Liang, Junyi
    Qin, Shuqi
    Liu, Li
    Fang, Kai
    Xu, Yunping
    Ding, Jinzhi
    Li, Fei
    Luo, Yiqi
    Yang, Yuanhe
    [J]. NATURE COMMUNICATIONS, 2016, 7
  • [9] Quantifying global soil carbon losses in response to warming
    Crowther, T. W.
    Todd-Brown, K. E. O.
    Rowe, C. W.
    Wieder, W. R.
    Carey, J. C.
    Machmuller, M. B.
    Snoek, B. L.
    Fang, S.
    Zhou, G.
    Allison, S. D.
    Blair, J. M.
    Bridgham, S. D.
    Burton, A. J.
    Carrillo, Y.
    Reich, P. B.
    Clark, J. S.
    Classen, A. T.
    Dijkstra, F. A.
    Elberling, B.
    Emmett, B. A.
    Estiarte, M.
    Frey, S. D.
    Guo, J.
    Harte, J.
    Jiang, L.
    Johnson, B. R.
    Kroel-Dulay, G.
    Larsen, K. S.
    Laudon, H.
    Lavallee, J. M.
    Luo, Y.
    Lupascu, M.
    Ma, L. N.
    Marhan, S.
    Michelsen, A.
    Mohan, J.
    Niu, S.
    Pendall, E.
    Penuelas, J.
    Pfeifer-Meister, L.
    Poll, C.
    Reinsch, S.
    Reynolds, L. L.
    Schmidt, I. K.
    Sistla, S.
    Sokol, N. W.
    Templer, P. H.
    Treseder, K. K.
    Welker, J. M.
    Bradford, M. A.
    [J]. NATURE, 2016, 540 (7631) : 104 - +
  • [10] Ding JZ, 2017, NAT GEOSCI, V10, P420, DOI [10.1038/ngeo2945, 10.1038/NGEO2945]