Plasmonic Nanobilliards: Controlling Nanoparticle Movement Using Forces Induced by Swift Electrons

被引:79
作者
Batson, P. E. [1 ]
Reyes-Coronado, A. [2 ,3 ,4 ]
Barrera, R. G. [5 ]
Rivacoba, A. [2 ,6 ,7 ]
Echenique, P. M. [2 ,6 ,7 ]
Aizpurua, J. [2 ,7 ]
机构
[1] Rutgers State Univ, Inst Adv Mat Devices & Nanotechnol, Piscataway, NJ 08854 USA
[2] DIPC, Donostia San Sebastian 20018, Spain
[3] Univ Nacl Autonoma Mexico, Ctr Ciencias Aplicadas & Desarrollo Tecnol, Mexico City 01000, DF, Mexico
[4] Fdn Res & Technol Hellas FORTH, IESL, Iraklion 71110, Crete, Greece
[5] Univ Nacl Autonoma Mexico, Inst Fis, Mexico City 01000, DF, Mexico
[6] Univ Pais Vasco UPV EHU, Donostia San Sebastian 20018, Spain
[7] Ctr Fis Mat CSIC UPV EHU, Donostia San Sebastian 20018, Spain
关键词
Plasmonics; plasmonic forces; optical forces; plasmon hybridization; aloof electron scattering; nanoparticle coalescence; SMALL SPHERES; MICROSCOPY; SCATTERING; PARTICLES; MOTION; BEAM; EXCITATIONS; CLUSTERS; OPTICS; CARBON;
D O I
10.1021/nl201795u
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Manipulation of nanoscale objects to build useful structures requires a detailed understanding and control of forces that guide nanoscale motion. We report here observation of electromagnetic forces in groups of nanoscale metal particles, derived from the plasmonic response to the passage of a swift electron beam. At moderate impact parameters, the forces are attractive, toward the electron beam, in agreement with simple image charge arguments. For smaller impact parameters, however, the forces are repulsive, driving the nanoparticle away from the passing electron. Particle pairs are most often pulled together by coupled plasmon modes having bonding symmetry. However, placement of the electron beam between a particle pair pushes the two particles apart by exciting antibonding plasmonic modes. We suggest how the repulsive force could be used to create a nanometer-sized trap for moving and orienting molecular-sized objects.
引用
收藏
页码:3388 / 3393
页数:6
相关论文
共 40 条
[1]   OBSERVATION OF A SINGLE-BEAM GRADIENT FORCE OPTICAL TRAP FOR DIELECTRIC PARTICLES [J].
ASHKIN, A ;
DZIEDZIC, JM ;
BJORKHOLM, JE ;
CHU, S .
OPTICS LETTERS, 1986, 11 (05) :288-290
[2]   Surface plasmon subwavelength optics [J].
Barnes, WL ;
Dereux, A ;
Ebbesen, TW .
NATURE, 2003, 424 (6950) :824-830
[3]   SURFACE-PLASMON COUPLING IN CLUSTERS OF SMALL SPHERES [J].
BATSON, PE .
PHYSICAL REVIEW LETTERS, 1982, 49 (13) :936-940
[4]   Sub-angstrom resolution using aberration corrected electron optics [J].
Batson, PE ;
Dellby, N ;
Krivanek, OL .
NATURE, 2002, 418 (6898) :617-620
[5]   INELASTIC-SCATTERING OF FAST ELECTRONS IN CLUSTERS OF SMALL SPHERES [J].
BATSON, PE .
SURFACE SCIENCE, 1985, 156 (JUN) :720-734
[6]   Motion of gold atoms on carbon in the aberration-corrected STEM [J].
Batson, Philip E. .
MICROSCOPY AND MICROANALYSIS, 2008, 14 (01) :89-97
[7]   Dynamical behaviour of nanocrystals in transmission electron microscopy: size, temperature or irradiation effects [J].
Buffat, PA .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2003, 361 (1803) :291-295
[8]   Probing Bright and Dark Surface-Plasmon Modes in Individual and Coupled Noble Metal Nanoparticles Using an Electron Beam [J].
Chu, Ming-Wen ;
Myroshnychenko, Viktor ;
Chen, Cheng Hsuan ;
Deng, Jing-Pei ;
Mou, Chung-Yuan ;
Javier Garcia de Abajo, F. .
NANO LETTERS, 2009, 9 (01) :399-404
[9]   Probing the photonic local density of states with electron energy loss spectroscopy [J].
de Abajo, F. J. Garcia ;
Kociak, M. .
PHYSICAL REVIEW LETTERS, 2008, 100 (10)
[10]   Momentum transfer to small particles by passing electron beams [J].
de Abajo, FJG .
PHYSICAL REVIEW B, 2004, 70 (11) :115422-1