Identifying patients with atrial fibrillation during sinus rhythm on ECG: Significance of the labeling in the artificial intelligence algorithm

被引:11
作者
Suzuki, Shinya [1 ]
Motogi, Jun [2 ]
Nakai, Hiroshi [3 ]
Matsuzawa, Wataru [2 ]
Takayanagi, Tsuneo [2 ]
Umemoto, Takuya [2 ]
Hirota, Naomi [1 ]
Hyodo, Akira [2 ]
Satoh, Keiichi [2 ]
Otsuka, Takayuki [1 ]
Arita, Takuto [1 ]
Yagi, Naoharu [1 ]
Yamashita, Takeshi [1 ]
机构
[1] Cardiovasc Inst, Dept Cardiovasc Med, Tokyo, Japan
[2] Nihon Kohden Corp, Tokyo, Japan
[3] Cardiovasc Inst, Informat Syst Div, Tokyo, Japan
来源
IJC HEART & VASCULATURE | 2022年 / 38卷
关键词
Atrial fibrillation; Artificial intelligence; Electrocardiography; ELECTRICAL CARDIOVERSION;
D O I
10.1016/j.ijcha.2022.100954
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: This study aimed to increase the knowledge on how to enhance the performance of artificial intelligence (AI)-enabled electrocardiography (ECG) to detect atrial fibrillation (AF) on sinus rhythm ECG (SR-ECG). Methods: It is a retrospective analysis of a single-center, prospective cohort study (Shinken Database). We developed AI-enabled ECG using SR-ECG to predict AF with a convolutional neural network (CNN). Among new patients in our hospital (n = 19,170), 276 AF label (having ECG on AF [AF-ECG] in the ECG database) and 1896 SR label with following three conditions were identified in the derivation dataset: (1) without structural heart disease, (2) in AF label, SR-ECG was taken within 31 days from AF-ECG, and (3) in SR label, follow-up >= 1,095 days. Three patterns of AF label were analyzed by timing of SR-ECG to AF-ECG (before/after/before-or-after, CNN algorithm 1 to 3). The outcome measurement was area under the curve (AUC), sensitivity, specificity, accuracy, and F1 score. As an extra-testing dataset, the performance of AI-enabled ECG was tested in patients with structural heart disease. Results: The AUC of AI-enabled ECG with CNN algorithm 1, 2, and 3 in the derivation dataset was 0.83, 0.88, and 0.86, respectively; when tested in patients with structural heart disease, 0.75, 0.81, and 0.78, respectively. Conclusion: We confirmed high performance of AI-enabled ECG to detect AF on SR-ECG in patients without structural heart disease. The performance enhanced especially when SR-ECG after index AF-ECG was included in the algorithm, which was consistent in patients with structural heart disease.
引用
收藏
页数:9
相关论文
共 50 条
[41]   Conversion and maintenance of sinus rhythm by bepridil in patients with persistent atrial fibrillation [J].
Nakazato, Y ;
Yasuda, M ;
Sasaki, A ;
Iida, Y ;
Kawano, Y ;
Nakazato, K ;
Tokano, T ;
Mineda, Y ;
Sumiyoshi, M ;
Nakata, Y ;
Daida, H .
CIRCULATION JOURNAL, 2005, 69 (01) :44-48
[42]   Maintenance of Sinus Rhythm and Survival in Patients With Heart Failure and Atrial Fibrillation [J].
Talajic, Mario ;
Khairy, Paul ;
Levesque, Sylvie ;
Connolly, Stuart J. ;
Dorian, Paul ;
Dubuc, Marc ;
Guerra, Peter G. ;
Hohnloser, Stefan H. ;
Lee, Kerry L. ;
Macle, Laurent ;
Nattel, Stanley ;
Pedersen, Ole D. ;
Stevenson, Lynne Warner ;
Thibault, Bernard ;
Waldo, Albert L. ;
Wyse, D. George ;
Roy, Denis .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2010, 55 (17) :1796-1802
[43]   Is Maintenance of Sinus Rhythm of Value in Patients with Atrial Fibrillation and Heart Failure? [J].
Sadek, Mouhannad M. ;
Skanes, Allan ;
Tang, Anthony S. L. .
CURRENT CARDIOLOGY REPORTS, 2022, 24 (10) :1227-1231
[44]   Restoring sinus rhythm in patients at a high risk for postoperative atrial fibrillation [J].
Benussi, Stefano ;
Galanti, Andrea ;
Alfieri, Ottavio .
ARCHIVES OF MEDICAL SCIENCE, 2008, 4 (02) :108-115
[45]   Stroke Patients with Sinus Rhythm and Atrial Fibrillation:Comparison of Echocardiography Findings [J].
Algin, Abdullah ;
Erdogan, Mehmet Ozgur ;
Colak, Sahin ;
Aydin, Irfan ;
Tayfur, Ismail ;
Afacan, Mustafa Ahmet ;
Aydin, Hakan .
EURASIAN JOURNAL OF EMERGENCY MEDICINE, 2019, 18 (03) :153-156
[46]   Atrial fibrillation patients with isolated pulmonary veins: Is sinus rhythm achievable? [J].
Szilagyi, Judit ;
Marcus, Gregory M. ;
Badhwar, Nitish ;
Lee, Byron K. ;
Lee, Randall J. ;
Vedantham, Vasanth ;
Tseng, Zian H. ;
Walters, Tomos ;
Scheinman, Melvin ;
Olgin, Jeffrey ;
Gerstenfeld, Edward P. .
JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, 2017, 28 (07) :754-761
[47]   Is Maintenance of Sinus Rhythm of Value in Patients with Atrial Fibrillation and Heart Failure? [J].
Mouhannad M. Sadek ;
Allan Skanes ;
Anthony S. L. Tang .
Current Cardiology Reports, 2022, 24 :1227-1231
[48]   The Application of Artificial Intelligence in Atrial Fibrillation Patients: From Detection to Treatment [J].
Liang, Hanyang ;
Zhang, Han ;
Wang, Juan ;
Shao, Xinghui ;
Wu, Shuang ;
Lyu, Siqi ;
Xu, Wei ;
Wang, Lulu ;
Tan, Jiangshan ;
Wang, Jingyang ;
Yang, Yanmin .
REVIEWS IN CARDIOVASCULAR MEDICINE, 2024, 25 (07)
[49]   An Artificial Intelligence Algorithm for Early Detection of Left Ventricular Systolic Dysfunction in Patients with Normal Sinus Rhythm [J].
Park, Seongjin ;
Lee, Hyo Jin ;
Song, Sung-Hee ;
Woo, Kyungchang ;
Kim, Jiwon ;
Kim, Juwon ;
Kim, Ju Youn ;
Park, Seung-Jung ;
On, Young Keun ;
Park, Kyoung-Min .
JOURNAL OF CLINICAL MEDICINE, 2025, 14 (12)
[50]   Artificial Intelligence-Enabled ECG to Identify Silent Atrial Fibrillation in Embolic Stroke of Unknown Source [J].
Rabinstein, Alejandro A. ;
Yost, Micah D. ;
Faust, Louis ;
Kashou, Anthony H. ;
Latif, Omar S. ;
Graff-Radford, Jonathan ;
Attia, Itzhak Zachi ;
Yao, Xiaoxi ;
Noseworthy, Peter A. ;
Friedman, Paul A. .
JOURNAL OF STROKE & CEREBROVASCULAR DISEASES, 2021, 30 (09)