Identifying patients with atrial fibrillation during sinus rhythm on ECG: Significance of the labeling in the artificial intelligence algorithm

被引:11
作者
Suzuki, Shinya [1 ]
Motogi, Jun [2 ]
Nakai, Hiroshi [3 ]
Matsuzawa, Wataru [2 ]
Takayanagi, Tsuneo [2 ]
Umemoto, Takuya [2 ]
Hirota, Naomi [1 ]
Hyodo, Akira [2 ]
Satoh, Keiichi [2 ]
Otsuka, Takayuki [1 ]
Arita, Takuto [1 ]
Yagi, Naoharu [1 ]
Yamashita, Takeshi [1 ]
机构
[1] Cardiovasc Inst, Dept Cardiovasc Med, Tokyo, Japan
[2] Nihon Kohden Corp, Tokyo, Japan
[3] Cardiovasc Inst, Informat Syst Div, Tokyo, Japan
来源
IJC HEART & VASCULATURE | 2022年 / 38卷
关键词
Atrial fibrillation; Artificial intelligence; Electrocardiography; ELECTRICAL CARDIOVERSION;
D O I
10.1016/j.ijcha.2022.100954
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: This study aimed to increase the knowledge on how to enhance the performance of artificial intelligence (AI)-enabled electrocardiography (ECG) to detect atrial fibrillation (AF) on sinus rhythm ECG (SR-ECG). Methods: It is a retrospective analysis of a single-center, prospective cohort study (Shinken Database). We developed AI-enabled ECG using SR-ECG to predict AF with a convolutional neural network (CNN). Among new patients in our hospital (n = 19,170), 276 AF label (having ECG on AF [AF-ECG] in the ECG database) and 1896 SR label with following three conditions were identified in the derivation dataset: (1) without structural heart disease, (2) in AF label, SR-ECG was taken within 31 days from AF-ECG, and (3) in SR label, follow-up >= 1,095 days. Three patterns of AF label were analyzed by timing of SR-ECG to AF-ECG (before/after/before-or-after, CNN algorithm 1 to 3). The outcome measurement was area under the curve (AUC), sensitivity, specificity, accuracy, and F1 score. As an extra-testing dataset, the performance of AI-enabled ECG was tested in patients with structural heart disease. Results: The AUC of AI-enabled ECG with CNN algorithm 1, 2, and 3 in the derivation dataset was 0.83, 0.88, and 0.86, respectively; when tested in patients with structural heart disease, 0.75, 0.81, and 0.78, respectively. Conclusion: We confirmed high performance of AI-enabled ECG to detect AF on SR-ECG in patients without structural heart disease. The performance enhanced especially when SR-ECG after index AF-ECG was included in the algorithm, which was consistent in patients with structural heart disease.
引用
收藏
页数:9
相关论文
共 50 条
[31]   Effect of sinus rhythm restoration on platelet function in patients with lone atrial fibrillation [J].
Makowski, Marcin ;
Smorag, Ireneusz ;
Bissinger, Andrzej ;
Grycewicz, Tomasz ;
Masiarek, Konrad ;
Makowska, Joanna ;
Grabowicz, Wlodzimierz ;
Lubinski, Andrzej ;
Baj, Zbigniew .
INTERNATIONAL JOURNAL OF CARDIOLOGY, 2014, 172 (01) :E19-E20
[32]   Sinus Rhythm Atrial Electrocardiographic Imaging in Patients With Mitral Regurgitation: Clues to the Substrate for Atrial Fibrillation [J].
Schill, Matthew R. ;
Vijayakumar, Ramya ;
Yates, Tari-Ann ;
McGilvray, Martha M. O. ;
Zemlin, Christian W. ;
Schuessler, Richard B. ;
Rudy, Yoram ;
Damiano, Ralph J. .
CIRCULATION-ARRHYTHMIA AND ELECTROPHYSIOLOGY, 2024, 17 (05) :E012666
[33]   Heart rate variability in patients with atrial fibrillation of sinus rhythm or atrial fibrillation: chaos or merit? [J].
Zhang, Lifan ;
Li, Bingxun ;
Wu, Lin .
ANNALS OF MEDICINE, 2025, 57 (01)
[34]   Conduction Disorders during Sinus Rhythm in Relation to Atrial Fibrillation Persistence [J].
van der Does, Willemijn F. B. ;
Heida, Annejet ;
van der Does, Lisette J. M. E. ;
Bogers, Ad J. J. C. ;
de Groot, Natasja M. S. .
JOURNAL OF CLINICAL MEDICINE, 2021, 10 (13)
[35]   The Disparities in the Electrogram Voltage Measurement During Atrial Fibrillation and Sinus Rhythm [J].
Chang, Chien-Jung ;
Lin, Yenn-Jiang ;
Higa, Satoshi ;
Chang, Shih-Lin ;
Lo, Li-Wei ;
Tuan, Ta-Chuan ;
Hu, Yu-Feng ;
Udyavar, Ameya R. ;
Tang, Wei-Hua ;
Tsai, Wen-Chin ;
Huang, Shin-Yu ;
Nguyen-Huu Tung ;
Suenari, Kazuyoshi ;
Tsao, Hsuan-Ming ;
Chen, Shih-Ann .
JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, 2010, 21 (04) :393-398
[36]   Recurring patterns of atrial fibrillation in surface ECG predict restoration of sinus rhythm by catheter ablation [J].
Di Marco, Luigi Yuri ;
Raine, Daniel ;
Bourke, John P. ;
Langley, Philip .
COMPUTERS IN BIOLOGY AND MEDICINE, 2014, 54 :172-179
[37]   A new smart wristband equipped with an artificial intelligence algorithm to detect atrial fibrillation [J].
Chen, Erdong ;
Jiang, Jie ;
Su, Rui ;
Gao, Meng ;
Zhu, Sainan ;
Zhou, Jing ;
Huo, Yong .
HEART RHYTHM, 2020, 17 (05) :847-853
[38]   Atrial fibrillation signal organization predicts sinus rhythm maintenance in patients undergoing cardioversion of atrial fibrillation [J].
Holmqvist, Fredrik ;
Stridh, Martin ;
Waktare, Johan E. P. ;
Roijer, Anders ;
Sornmo, Leif ;
Platonov, Pyotr G. ;
Meurling, Carl J. .
EUROPACE, 2006, 8 (08) :559-565
[39]   Effect of restoring sinus rhythm in hypertensive patients with atrial fibrillation undergoing electrical cardioversion [J].
Maselli, Monica ;
Giantin, Valter ;
Franchin, Alessandro ;
Attanasio, Francesca ;
Tramontano, Alessandra ;
De Toni, Pietro ;
Pengo, Valentina ;
Corrado, Domenico ;
Manzato, Enzo .
BLOOD PRESSURE MONITORING, 2016, 21 (06) :335-339
[40]   Blood pressure prior to cardioversion predicts a conversion to sinus rhythm in patients with atrial fibrillation [J].
Kaluzay, J. ;
Fereneik, M. ;
Mardiakova, K. ;
Remisova, S. .
BRATISLAVA MEDICAL JOURNAL-BRATISLAVSKE LEKARSKE LISTY, 2008, 109 (03) :116-120