Application of Chebyshev polynomials to classes of analytic functions

被引:31
作者
Dziok, Jacek [1 ]
Raina, Ravinder Krishna [2 ]
Sokol, Janusz [3 ]
机构
[1] Univ Rzeszow, Fac Math & Nat Sci, Rzeszow, Poland
[2] MP Univ Agr & Technol, Udaipur, India
[3] Rzeszow Univ Technol, Dept Math, PL-35959 Rzeszow, Poland
关键词
D O I
10.1016/j.crma.2015.02.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Our objective in this paper is to consider some basic properties of the familiar Chebyshev polynomials in the theory of analytic functions. We investigate some basic useful characteristics for a class H(t), t is an element of (1/2, t] de functions f, with f(0) = 0, f'(0) = 1, analytic in the open unit disc U = {z :\z\ < 1) satisfying the condition that [GRAPHICS] where H(z,t) is the generating function of the second kind of Chebyshev polynomials. The Fekete-Szego problem in the class is also solved. (C) 2015 Published by Elsevier Masson SAS on behalf of Academie des sciences.
引用
收藏
页码:433 / 438
页数:6
相关论文
共 17 条
[1]   ON THE INTEGRAL CONVOLUTION OF CERTAIN CLASSES OF ANALYTIC FUNCTIONS [J].
Bednarz, Urszula ;
Sokol, Janusz .
TAIWANESE JOURNAL OF MATHEMATICS, 2009, 13 (05) :1387-1396
[2]   A general solution of the Fekete-Szego problem [J].
Dziok, Jacek .
BOUNDARY VALUE PROBLEMS, 2013,
[3]   Certain results for a class of convex functions related to a shell-like curve connected with Fibonacci numbers [J].
Dziok, Jacek ;
Raina, Ravinder Krishna ;
Sokol, Janusz .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (09) :2605-2613
[4]   On α-convex functions related to shell-like functions connected with Fibonacci numbers [J].
Dziok, Jacek ;
Raina, Ravinder Krishna ;
Sokol, Janusz .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (03) :996-1002
[5]  
Goodman A.W., 1991, Ann. Pol. Math., V56, P87, DOI DOI 10.4064/ap-56-1-87-92
[6]   Some problems for certain family of starlike functions [J].
Jurasinska, Renata ;
Sokol, Janusz .
MATHEMATICAL AND COMPUTER MODELLING, 2012, 55 (11-12) :2134-2140
[7]   Linear operators associated with k-uniformly convex functions [J].
Kanas, S ;
Srivastava, HM .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2000, 9 (02) :121-132
[8]   Conic regions and k-uniform convexity [J].
Kanas, S ;
Wisniowska, A .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1999, 105 (1-2) :327-336
[9]  
Kanas S., 1998, FOLIA SCI U TEHN RES, V22, P65
[10]  
Kanas S., 2000, Rev. Roum. Math. Pures Appl., V45, P647