Record-Low Thermal Boundary Resistance between Diamond and GaN-on-SiC for Enabling Radiofrequency Device Cooling

被引:68
作者
Malakoutian, Mohamadali [1 ]
Field, Daniel E. [2 ]
Hines, Nicholas J. [3 ,4 ]
Pasayat, Shubhra [5 ]
Graham, Samuel [3 ,4 ]
Kuball, Martin [2 ]
Chowdhury, Srabanti [1 ]
机构
[1] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[2] Univ Bristol, Ctr Device Thermog & Reliabil, Bristol BS8 1TL, Avon, England
[3] Georgia Inst Technol, George W Woodruff Sch Mech Engn, Atlanta, GA 30332 USA
[4] Georgia Inst Technol, Heat Lab, Atlanta, GA 30332 USA
[5] Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA
关键词
polycrystalline diamond; N-polar GaN; thermal management; thermal boundary resistance; 5G networks; POLYCRYSTALLINE DIAMOND; CONDUCTIVITY; FILMS; SILICON;
D O I
10.1021/acsami.1c13833
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The implementation of SG-and-beyond networks requires faster, high-performance, and power-efficient semiconductor devices, which are only possible with materials that can support higher frequencies. Gallium nitride (GaN) power amplifiers are essential for SG-and-beyond technologies since they provide the desired combination of high frequency and high power. These applications along with terrestrial hub and backhaul communications at high power output can present severe heat removal challenges. The cooling of GaN devices with diamond as the heat spreader has gained significant momentum since device self-heating limits GaN's performance. However, one of the significant challenges in integrating polycrystalline diamond on GaN devices is maintaining the device performance while achieving a low diamond/GaN channel thermal boundary resistance. In this study, we achieved a record-low thermal boundary resistance of around 3.1 +/- 0.7 m(2) K/GW at the diamond/Si3N4 /GaN interface, which is the closest to theoretical prediction to date. The diamond was integrated within similar to 1 nm of the GaN channel layer without degrading the channel's electrical behavior. Furthermore, we successfully minimized the residual stress in the diamond layer, enabling more isotropic polycrystalline diamond growth on GaN with thicknesses >2 mu m and a similar to 1.9 mu m lateral grain size. More isotropic grains can spread the heat in both vertical and lateral directions efficiently. Using transient thermoreflectance, the thermal conductivity of the grains was measured to be 638 +/- 48 W/m K, which when combined with the record-low thermal boundary resistance makes it a leading-edge achievement.
引用
收藏
页码:60553 / 60560
页数:8
相关论文
共 58 条
  • [1] Adachi S, 2017, SPRINGER HBK, P725, DOI 10.1007/978-3-319-48933-9_30
  • [2] Influence of strain on thermal conductivity of silicon nitride thin films
    Alam, M. T.
    Manoharan, M. P.
    Haque, M. A.
    Muratore, C.
    Voevodin, A.
    [J]. JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2012, 22 (04)
  • [3] Diamond overgrown InAlN/GaN HEMT
    Alomari, M.
    Dipalo, M.
    Rossi, S.
    Diforte-Poisson, M. -A.
    Delage, S.
    Carlin, J. -F.
    Grandjean, N.
    Gaquiere, C.
    Toth, L.
    Pecz, B.
    Kohn, E.
    [J]. DIAMOND AND RELATED MATERIALS, 2011, 20 (04) : 604 - 608
  • [4] Control of the in-plane thermal conductivity of ultra-thin nanocrystalline diamond films through the grain and grain boundary properties
    Anaya, Julian
    Rossi, Stefano
    Alomari, Mohammed
    Kohn, Erhard
    Toth, Lajos
    Pecz, Bela
    Hobart, Karl D.
    Anderson, Travis J.
    Feygelson, Tatyana I.
    Pate, Bradford B.
    Kuball, Martin
    [J]. ACTA MATERIALIA, 2016, 103 : 141 - 152
  • [5] Thermal transport and grain boundary conductance in ultrananocrystalline diamond thin films
    Angadi, Maki A.
    Watanabe, Taku
    Bodapati, Arun
    Xiao, Xingcheng
    Auciello, Orlando
    Carlisle, John A.
    Eastman, Jeffrey A.
    Keblinski, Pawel
    Schelling, Patrick K.
    Phillpot, Simon R.
    [J]. JOURNAL OF APPLIED PHYSICS, 2006, 99 (11)
  • [6] Thermal Characterization of Si3N4 Thin Films Using Transient Thermoreflectance Technique
    Bai, Suyuan
    Tang, Zhenan
    Huang, Zhengxing
    Yu, Jun
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2009, 56 (08) : 3238 - 3243
  • [7] The thermal conductivity of polycrystalline diamond films: Effects of isotope content
    Belay, K
    Etzel, ZY
    Onn, DG
    Anthony, TR
    [J]. JOURNAL OF APPLIED PHYSICS, 1996, 79 (11) : 8336 - 8340
  • [8] Thermal conductivities of evaporated gold films on silicon and glass
    Chen, G
    Hui, P
    [J]. APPLIED PHYSICS LETTERS, 1999, 74 (20) : 2942 - 2944
  • [9] Low thermal resistance of a GaN-on-SiC transistor structure with improved structural properties at the interface
    Chen, Jr-Tai
    Pomeroy, James W.
    Rorsman, Niklas
    Xia, Chao
    Virojanadara, Chariya
    Forsberg, Urban
    Kuball, Martin
    Janzen, Erik
    [J]. JOURNAL OF CRYSTAL GROWTH, 2015, 428 : 54 - 58
  • [10] Tunable Thermal Energy Transport across Diamond Membranes and Diamond-Si Interfaces by Nanoscale Graphoepitaxy
    Cheng, Zhe
    Bai, Tingyu
    Shi, Jingling
    Feng, Tianli
    Wang, Yekan
    Mecklenburg, Matthew
    Li, Chao
    Hobart, Karl D.
    Feygelson, Tatyana I.
    Tadjer, Marko J.
    Pate, Bradford B.
    Foley, Brian M.
    Yates, Luke
    Pantelides, Sokrates T.
    Cola, Baratunde A.
    Goorsky, Mark
    Graham, Samuel
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (20) : 18517 - 18527