ELSI: A unified software interface for Kohn-Sham electronic structure solvers

被引:92
作者
Yu, Victor Wen-zhe
Corsetti, Fabiano [2 ,3 ,4 ]
Garcia, Alberto [5 ]
Huhn, William P. [1 ]
Jacquelin, Mathias [6 ]
Jia, Weile [6 ,7 ]
Lange, Bjoern [1 ]
Lin, Lin [6 ,7 ]
Lu, Jianfeng
Mi, Wenhui
Seifitokaldani, Ali
Vazquez-Mayagoitia, Alvaro [9 ]
Yang, Chao [6 ]
Yang, Haizhao [8 ]
Blum, Volker [1 ]
机构
[1] Duke Univ, Dept Mech Engn & Mat Sci, Durham, NC 27707 USA
[2] Imperial Coll London, Dept Mat, London SW7 2AZ, England
[3] Imperial Coll London, Dept Phys, London SW7 2AZ, England
[4] Imperial Coll London, Thomas Young Ctr Theory & Simulat Mat, London SW7 2AZ, England
[5] CSIC, ICMA, Inst Ciencia Mat Barcelona, E-08193 Bellaterra, Spain
[6] Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA
[7] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[8] Duke Univ, Dept Math, Durham, NC 27707 USA
[9] Argonne Natl Lab, Argonne Leadership Comp Facil, Argonne, IL 60439 USA
基金
美国国家科学基金会;
关键词
Density-functional theory; Kohn-Sham eigenvalue problem; Parallel computing; ORBITAL MINIMIZATION METHOD; DENSITY-FUNCTIONAL THEORY; TOTAL-ENERGY CALCULATIONS; MOLECULAR-DYNAMICS; APPROXIMATION; PERFORMANCE; ALGORITHM; SCHEMES;
D O I
10.1016/j.cpc.2017.09.007
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Solving the electronic structure from a generalized or standard eigenproblem is often the bottleneck in large scale calculations based on Kohn-Sham density-functional theory. This problem must be addressed by essentially all current electronic structure codes, based on similar matrix expressions, and by high-performance computation. We here present a unified software interface, ELSI, to access different strategies that address the Kohn-Sham eigenvalue problem. Currently supported algorithms include the dense generalized eigensolver library ELPA, the orbital minimization method implemented in libOMM, and the pole expansion and selected inversion (PEXSI) approach with lower computational complexity for semilocal density functionals. The ELSI interface aims to simplify the implementation and optimal use of the different strategies, by offering (a) a unified software framework designed for the electronic structure solvers in Kohn-Sham density-functional theory; (b) reasonable default parameters for a chosen solver; (c) automatic conversion between input and internal working matrix formats, and in the future (d) recommendation of the optimal solver depending on the specific problem. Comparative benchmarks are shown for system sizes up to 11,520 atoms (172,800 basis functions) on distributed memory supercomputing architectures. Program summary Program title: ELSI Interface Program Files doi: http://dx.doi.org/10.17632/y8vzhzdm62.1 Licensing provisions: BSD 3-clause Programming language: Fortran 2003, with interface to C/C++ External routines/libraries: MPI, BLAS, LAPACK, ScaLAPACK, ELPA, libOMM, PEXSI, ParMETIS, SuperLU_DIST Nature of problem: Solving the electronic structure from a generalized or standard eigenvalue problem in calculations based on Kohn-Sham density functional theory (KS-DFT). Solution method: To connect the KS-DFT codes and the KS electronic structure solvers, ELSI provides a unified software interface with reasonable default parameters, hierarchical control over the interface and the solvers, and automatic conversions between input and internal working matrix formats. Supported solvers are: ELPA (dense generalized eigensolver), libOMM (orbital minimization method), and PEXSI (pole expansion and selected inversion method). Restrictions: The ELSI interface requires complete information of the Hamiltonian matrix. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:267 / 285
页数:19
相关论文
共 80 条
[1]  
Anderson Ed., 1991, 6 DISTR MEM COMP C 1, P287, DOI [DOI 10.1109/DMCC.1991.633146, 10.1109/DMCC.1991.633146]
[2]  
[Anonymous], 2013, MATRIX COMPUTATIONS
[3]   Parallel solution of partial symmetric eigenvalue problems from electronic structure calculations [J].
Auckenthaler, T. ;
Blum, V. ;
Bungartz, H. -J. ;
Huckle, T. ;
Johanni, R. ;
Kraemer, L. ;
Lang, B. ;
Lederer, H. ;
Willems, P. R. .
PARALLEL COMPUTING, 2011, 37 (12) :783-794
[4]   DENSITY-FUNCTIONAL THERMOCHEMISTRY .3. THE ROLE OF EXACT EXCHANGE [J].
BECKE, AD .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (07) :5648-5652
[5]   Recent developments and applications of the real-space multigrid method [J].
Bernholc, J. ;
Hodak, Miroslav ;
Lu, Wenchang .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2008, 20 (29)
[6]  
BISCHOF C, 1994, PROCEEDINGS OF THE SCALABLE HIGH-PERFORMANCE COMPUTING CONFERENCE, P23, DOI 10.1109/SHPCC.1994.296622
[7]   Algorithm 807. The SBR toolbox-software for successive band reduction [J].
Bischof, CH ;
Lang, B ;
Sun, XB .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2000, 26 (04) :602-616
[8]  
Blackford L., 1997, ScaLAPACK Users Guide
[9]  
Blaha P., 2001, WIEN2K AUGMENTED PLA, V60, P1
[10]  
Blugel S., 1987, JULICH FLEUR PROJECT