RIEMANN-HILBERT CORRESPONDENCE FOR UNIT F-CRYSTALS ON EMBEDDABLE ALGEBRAIC VARIETIES

被引:1
作者
Ohkawa, Sachio [1 ]
机构
[1] Univ Tokyo, Grad Sch Math Sociences, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, Japan
关键词
D-modules; Frobenius structure; etale sheaves; D-MODULES;
D O I
10.5802/aif.3184
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a separated scheme X of finite type over a perfect field k of characteristic p > 0 which admits an immersion into a proper smooth scheme over the truncated Witt ring W-n, we define the bounded derived category of locally finitely generated unit F-crystals with finite Tor-dimension on X over W-n, independently of the choice of the immersion. Then we prove the anti-equivalence of this category with the bounded derived category of constructible etale sheaves of Z/p(n)Z-modules with finite Tor-dimension. We also discuss the relationship of t-structures on these derived categories when n = 1.
引用
收藏
页码:1077 / 1120
页数:44
相关论文
共 13 条
[1]  
[Anonymous], 1990, GRUNDLEHREN MATH WIS
[2]  
[Anonymous], 2004, GEOMETRIC ASPECTS DW
[3]  
BERTHELOT P., 2000, MEMOIRES SOC MATH FR, V81, P1
[4]   Overcoherent arithmetic D-modules.: Application to L-functions [J].
Caro, D .
ANNALES DE L INSTITUT FOURIER, 2004, 54 (06) :1943-+
[5]  
Deligne, 1977, COHOMOLOGIE ETALE, V569
[6]  
Emerton Matthew, 2004, ASTERISQUE, V293, pvi+257
[7]  
GROTHENDIECK A, 1967, Publ. Math. IHES, V32, P1
[8]  
Hartshorne Robin, 1966, LECT NOTES MATH, V20
[9]  
ILLUSIE L., 1971, LECT NOTES MATH, V225
[10]   THE RIEMANN-HILBERT PROBLEM FOR HOLONOMIC SYSTEMS [J].
KASHIWARA, M .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1984, 20 (02) :319-365