RIEMANN-HILBERT CORRESPONDENCE FOR UNIT F-CRYSTALS ON EMBEDDABLE ALGEBRAIC VARIETIES

被引:1
|
作者
Ohkawa, Sachio [1 ]
机构
[1] Univ Tokyo, Grad Sch Math Sociences, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, Japan
关键词
D-modules; Frobenius structure; etale sheaves; D-MODULES;
D O I
10.5802/aif.3184
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a separated scheme X of finite type over a perfect field k of characteristic p > 0 which admits an immersion into a proper smooth scheme over the truncated Witt ring W-n, we define the bounded derived category of locally finitely generated unit F-crystals with finite Tor-dimension on X over W-n, independently of the choice of the immersion. Then we prove the anti-equivalence of this category with the bounded derived category of constructible etale sheaves of Z/p(n)Z-modules with finite Tor-dimension. We also discuss the relationship of t-structures on these derived categories when n = 1.
引用
收藏
页码:1077 / 1120
页数:44
相关论文
共 7 条