Elimination of grain boundaries and its effect on the properties of silicon nitride ceramics

被引:33
作者
Hu, Feng [1 ]
Zhu, Tianbin [2 ,3 ]
Xie, Zhipeng [1 ]
Liu, Jian [1 ]
Hu, Zunlan [1 ]
An, Di [1 ]
机构
[1] Tsinghua Univ, Sch Mat Sci & Engn, State Key Lab New Ceram & Fine Proc, Beijing 100084, Peoples R China
[2] Wuhan Univ Sci & Technol, State Key Lab Refractories & Met, Wuhan 430081, Peoples R China
[3] Wuhan Univ Sci & Technol, Natl Prov Joint Engn Res Ctr High Temp Mat & Lini, Wuhan 430081, Peoples R China
基金
中国国家自然科学基金;
关键词
Silicon nitride ceramics; Thermal conductivity; Grain boundary; Post-sintering heat treatment; ENHANCED THERMAL-CONDUCTIVITY; BETA-SI3N4; BEHAVIOR; YTTRIA; POWDER;
D O I
10.1016/j.ceramint.2020.02.024
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
To eliminate the excess grain boundary phase in silicon nitride ceramics prepared through hot pressing and a post-sintering heat treatment, carbon was introduced into the sintered ceramics. This was accomplished in two ways: first, a small amount of carbon was used as a sintering additive; however, this creates large pores in the ceramics, resulting in a decrease in the thermal conductivity and mechanical properties of the samples. Alternatively, the C/Si3N4 power bed could be used instead of the BN/Si3N4 power bed, which obviously eliminates the grain boundary phase. Further, the C/Si3N4 power bed possess excellent mechanical properties while increasing the thermal conductivity of the samples. Therefore, the silicon nitride ceramics with 123 W m(-1) K-1 thermal conductivity and 986 MPa bending strength of can be obtained using the C/Si3N4 powder bed during the post-sintering heat treatment.
引用
收藏
页码:12606 / 12612
页数:7
相关论文
共 28 条
[1]   TOUGHENING BEHAVIOR IN WHISKER-REINFORCED CERAMIC MATRIX COMPOSITES [J].
BECHER, PF ;
HSUEH, CH ;
ANGELINI, P ;
TIEGS, TN .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1988, 71 (12) :1050-1061
[2]   MICROSTRUCTURAL DESIGN OF TOUGHENED CERAMICS [J].
BECHER, PF .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1991, 74 (02) :255-269
[3]  
Griffith A.A., 1921, Philos. Trans. R. Soc. London Ser. A Containing Papers Math. Phys. Charact., V221, P163, DOI [10.1098/rsta.1921.0006, DOI 10.1098/RSTA.1921.0006]
[4]  
Haggerty J., 1995, Ceram. Eng. Sci. Proc., V16, P475, DOI [10.1002/9780470314715.ch52, DOI 10.1002/9780470314715.CH52]
[5]   Enhanced toughness and reliability of Si3N4-SiCw composites under oscillatory pressure sintering [J].
Han, Yao ;
Li, Shuang ;
Zhu, Tianbin ;
Wu, Weiwei ;
An, Di ;
Hu, Feng ;
Zhai, Fengrui ;
Xie, Zhipeng .
CERAMICS INTERNATIONAL, 2018, 44 (11) :12169-12173
[6]   Molecular dynamics calculation of the ideal thermal conductivity of single-crystal α- and β-Si3N4 -: art. no. 134110 [J].
Hirosaki, N ;
Ogata, S ;
Kocer, C ;
Kitagawa, H ;
Nakamura, Y .
PHYSICAL REVIEW B, 2002, 65 (13) :1-11
[7]  
Horiguchi Akihiro, 1989, U.S. Patent, Patent No. [4 (847), 48471989]
[8]   High performance porous silicon nitrides [J].
Inagaki, Y ;
Kondo, N ;
Ohji, T .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2002, 22 (14-15) :2489-2494
[9]  
Kingery W.D., 1962, PROGR CERAMIC SCI, V2, P181
[10]   Thermal conductivity of β-Si3N4:: I, effects of various microstructural factors [J].
Kitayama, M ;
Hirao, K ;
Toriyama, M ;
Kanzaki, S .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1999, 82 (11) :3105-3112